335
Views
8
CrossRef citations to date
0
Altmetric
Developmental Biology of Reproductive Structures

The backstage of the ABC model: The Antirrhinum majus contribution

, &

REFERENCES

  • AbrahamDS, VershonAK. 2005. N-terminal arm of Mcm1 is required for transcription of a subset of genes involved in maintenance of the cell wall. Eukaryot Cell4: 1808–1819.
  • AiroldiCA, BergonziS, DaviesB. 2010. Single amino acid change alters the ability to specify male or female organ identity. Proc Natl Acad Sci USA107 : 18898–18902.
  • AiroldiCA, DaviesB. 2012. Gene duplication and the evolution of plant MADS-box transcription factors. J Genet Genomics39: 157–165.
  • AllenKD. 2002. Assaying gene content in Arabidopsis. Proc Natl Acad Sci USA99: 9568–9572.
  • AlmeidaJ, GalegoL. 2005. Flower symmetry and shape in Antirrhinum. Int J Dev Biol49: 527–537.
  • AlmeidaJ, RochetaM, GalegoL. 1997. Genetic control of flower shape in Antirrhinum majus. Development124: 1387–1392.
  • AmbroseBA, LernerDR, CiceriP, PadillaCM, YanofskyMF, SchmidtRJ. 2000. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell5: 569–579.
  • AngenentG, FrankenJ, BusscherM, ColomboL, Van TunenA. 1993. Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J4: 101–112.
  • BellAD. 1991. Plant form: An illustrated guide to flowering plant morphology. Oxford, UK: Oxford University Press.
  • BeyM, StuberK, FellenbergK, Schwarz-sommerZ, SommerH, SaedlerH, et al. 2004. Characterization of Antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell16: 3197–3215.
  • BowmanJL, SmythDR, MeyerowitzEM. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development112: 1–20.
  • BozziniA. 1969. IL Contributo Della Mutagenesi Allo Studio di Alcuni Problemi Evolutivi e Tassonomici Nelle Piante Superiori. Plant Biosyst103: 401–430.
  • BradleyD, CarpenterR, SommerH, HartleyN, CoenE. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell72: 85–95.
  • BradleyD, VincentC, CarpenterR, CoenE. 1996. Pathways for inflorescence and floral induction in Antirrhinum. Development122: 1535–1544.
  • CarpenterR, CoenES. 1990. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev4: 1483–1493.
  • CarpenterR, CoenES. 1995. Transposon induced chimeras show that floricaula, a meristem identity gene, acts non-autonomously between cell layers. Development121: 19–26.
  • CarpenterR, CopseyL, VincentC, DoyleS, MagrathR, CoenE. 1995. Control of flower development and phyllotaxy by meristem identity genes in Antirrhinum. Plant Cell7: 2001–2011.
  • CartolanoM, CastilloR, EfremovaN, KuckenbergM, ZethofJ, GeratsT, et al. 2007. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet39: 901–905.
  • CausierB. 2004. Studying the interactome with the yeast two-hybrid system and mass spectrometry. Mass Spectrom Rev23: 350–367.
  • CausierB, CastilloR, ZhouJ, IngramR, XueY, Schwarz-SommerZ, et al. 2005. Evolution in action: Following function in duplicated floral homeotic genes. Curr Biol15: 1508–1512.
  • CausierB, Schwarz-SommerZ, DaviesB. 2010. Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol21: 73–79.
  • CoenE. 1991. The role of homeotic genes in flower development and evolution. Annu Rev Plant Physiol Plant Mol Biol42: 241–279.
  • CoenES, CarpenterR, MartinC. 1986. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell47: 285–296.
  • CoenES, MeyerowitzEM. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature353: 31–37.
  • CoenES, NugentJM. 1994. Evolution of flowers and inflorescences. Development (Supplement): 107–116.
  • DaviesB, CartolanoM, Schwarz-SommerZ. 2006. Flower development: The Antirrhinum perspective. Adv Bot Res44: 279–321.
  • DaviesB, Egea-CortinesM, De Andrade SilvaE, SaedlerH, SommerH. 1996. Multiple interactions amongst floral homeotic MADS box proteins. EMBO J15: 4330–4343.
  • DaviesB, MotteP, KeckE, SaedlerH, SommerH, Schwarz-SommerZ. 1999. PLENA and FARINELLI: Redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J18: 4023–4034.
  • De FolterS, ImminkRGH, KiefferM, ParenicovaL, HenzSR, WeigelD, et al. 2005. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell17: 1424–1433.
  • Egea Gutierrez-CortinesME, DaviesB. 2000. Beyond the ABCs: Ternary complex formation in the control of floral organ identity. Trends Plant Sci5: 471–476.
  • Egea-CortinesM, SaedlerH, SommerH. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J18: 5370–5379.
  • García-BarriusoM, Fernández-CastellanoC, RochaJ, BernardosS, AmichF. 2012. Conservation study of endemic plants in serpentine landscapes: Antirrhinum rothmaleri (Plantaginaceae), a serpentinophyte with a restricted geographic distribution. Plant Biosyst146: 291–301.
  • GoetheJW. 1790. Versuch die Metamorphose der Pflanzen zu erklären. Ettingersche Buchhandlung.
  • GolzJF, RoccaroM, KuzoffR, HudsonA. 2004. GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development131: 3661–3670.
  • GotoK, MeyerowitzEM. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev8: 1548–1560.
  • Gustafson-BrownC, SavidgeB, YanofskyM. 1994. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell76: 131–143.
  • HantkeSS, CarpenterR, CoenES. 1995. Expression of floricaula in single cell layers of periclinal chimeras activates downstream homeotic genes in all layers of floral meristems. Development121: 27–35.
  • HonmaT, GotoK. 2000. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development127: 2021–2030.
  • HudsonA, CritchleyJ, ErasmusY. 2008. The genus Antirrhinum (snapdragon): A flowering plant model for evolution and development. Cold Spring Harb Protoc, 10.1101/pdbemo100.
  • HuijserP, KleinJ, LonnigW-E, MeijerH, SaedlerH, SommerH. 1992. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J11: 1239–1249.
  • IrishVF, SussexIM. 1990. Function of the apetala-1 gene during Arabídopsis floral development. Plant Cell2: 741–753.
  • JackT, BrockmanLL, MeyerowitzEM. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell68: 683–697.
  • JofukuKD, Den BoerBG, Van MontaguM, OkamuroJK. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell6: 1211–1225.
  • KaterMM, ColomboL, FrankenJ, BusscherM, MasieroS, Van Lookeren CampagneMM, et al. 1998. Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell10: 171–182.
  • KeckE, McSteenP, CarpenterR, CoenE. 2003. Separation of genetic functions controlling organ identity in flowers. EMBO J22: 1058–1066.
  • KempinSA, MandelMA, YanofskyMF. 1993. Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol103: 1041–1046.
  • KlemmM. 1927. Vergleichende morphologische und entwicklungsgeschichtIiche Untersuchungen einer reihe multipler Allelomorphe bei Antirrhinum majus. Bot Archiv20: 423–474.
  • KramerEM, DoritRL, IrishVF. 1998. Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics149: 765–783.
  • KramerEM, IrishVF. 1999. Evolution of genetic mechanisms controlling petal development. Nature399: 144–148.
  • KunstL, KlenzJE, Martinez-ZapaterJ, HaughnGW. 1989. AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell1: 1195–1208.
  • LauriA, XingS, HeidmannI, SaedlerH, ZachgoS. 2006. The pollen-specific DEFH125 promoter from Antirrhinum is bound in vivo by the MADS-box proteins DEFICIENS and GLOBOSA. Planta224: 61–71.
  • LiljegrenSJ, DittaGS, EshedY, SavidgeB, BowmanJL, YanofskyMF. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature404: 766–770.
  • LittA, KramerEM. 2010. The ABC model and the diversification of floral organ identity. Semin Cell Dev Biol21: 129–137.
  • LuoD, CarpenterR, VincentCA, CopseyL, CoenE. 1995. Origin of floral asymmetry in Antirrhinum. Nature383: 794–799.
  • Manchado-RojoM, Delgado-BenarrochL, RocaMJ, WeissJ, Egea-CortinesM. 2012. Quantitative levels of Deficiens and Globosa during late petal development show a complex transcriptional network topology of B function. Plant J72: 294–307.
  • MandelM, Gustafson-BrownC, SavidgeB, YanofskyM. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature360: 273–277.
  • MasieroS, LiM-A, WillI, HartmannU, SaedlerH, HuijserP, et al. 2004. INCOMPOSITA: A MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development131: 5981–5990.
  • MenaM, AmbroseBA, MeeleyRB, BriggsSP, YanofskyMF, SchmidtRJ. 1996. Diversification of C-function activity in maize flower development. Science274: 1537–1540.
  • MendesMA, GuerraRF, BernsMC, ManzoC, MasieroS, FinziL, et al. 2013. MADS-domain transcription factors mediate short-range DNA looping that is essential for target gene expression in Arabidopsis. Plant Cell25: 2560–2572.
  • MeyerowitzEM, BowmanJL, BrockmanLL, DrewsGN, JackT, SieburthLE, et al. 1991. A genetic and molecular model for flower development in Arabidopsis thaliana. Development (Supplement)1: 157–167.
  • MeyerowitzEM, SmythDR, BowmanJL. 1989. Abnormal flowers and pattern formation in floral development. Development106: 209–217.
  • MotteP, SaedlerH, Schwarz-SommerZ. 1998. STYLOSA and FISTULATA: Regulatory components of the homeotic control of Antirrhinum floral organogenesis. Development125: 71–84.
  • OkamuroJK, CasterB, VillarroelR, Van MontaguM, JofukuKD. 1997. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA94: 7076–7081.
  • OlmsteadRG, DePamphilisCW, WolfeAD, YoungND, ElisonsWJ, ReevesPA. 2001. Disintegration of the Scrophulariaceae. Am J Bot88: 348–361.
  • PnueliL, HarevenD, BrodayL, HurwitzC, LifschitzE. 1994. The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell6: 175–186.
  • PuruggananMD, RounsleySD, SchmidtRJ, MartinF. 1995. Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genetics140: 345–356.
  • RiechmannJL, MeyerowitzEM. 1997. MADS domain proteins in plant development. Biol Chem378: 1079–1101.
  • Rolland-LaganA-G, BanghamJA, CoenE. 2003. Growth dynamics underlying petal shape and asymmetry. Nature422: 161–163.
  • SamachA, KohalmiSE, MotteP, DatlaR, HaughnGW. 1997. Divergence of function and regulation of class B floral organ identity genes. Plant Cell9: 559–570.
  • SchmidtRJ, VeitB, MandelMA, MenaM, HakeS, YanofskyMF. 1993. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell5: 729–737.
  • Schwarz-SommerZ, DaviesB, HudsonA. 2003. An everlasting pioneer: The story of Antirrhinum research: Nature reviews. Genetics4: 657–666.
  • Schwarz-SommerZ, HueI, HuijserP, FlorPJ, HansenR, TetensF, et al. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J11: 251–263.
  • Schwarz-SommerZ, HuijserP, NackenW, SaedlerH, SommerH. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science250: 931–936.
  • SommerH, BeltranJ, HuijserP, PapeH, LonnigW-E, SaedlerH, et al. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: The protein shows homology to transcription factors. EMBO J9: 605–613.
  • SommerH, BonasU, SaedlerH. 1988. Transposon-induced alterations in the promoter region affect transcription of the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet211: 49–55.
  • StevensP, CullenS. 1990. Linnaeus, the cortex-medulla theory, and the key to his understanding of plant form and natural relationships. J Arnold Arbor71: 179–220.
  • StubbeH. 1966. Genetik und Zytologie von Antirrhinum L. sect Antirrhinum. Veb Gustav Fischer Verlag Jena.
  • TheißenG, SaedlerH. 2001. Floral quartets. Nature409: 469–471.
  • TheißenG, StraterT, FischerA, SaedlerH. 1995. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene156: 155–166.
  • TrobnerW, RamirezL, MotteP, HueI, HuijserP, LonnigW, et al. 1992. GLOBOSA: A homeotic gene which interacts with DEFICIENS organogenesis in the control of Antirrhinum floral organogenesis. EMBO J11: 4693–4704.
  • TsuchimotoS, Van DerKrol AR, ChuaN. 1993. Ectopic expnession of pMADS3 in Transgenic Petunia Phenocopies the Petunia blind Mutant. Plant Cell5: 843–853.
  • UchiyamaT, FujinoK, OgawaT, WakatsukiA, KishimaY, MikamiT, et al. 2009. Stable transcription activities dependent on an orientation of Tam3 transposon insertions into Antirrhinum and yeast promoters occur only within chromatin. Plant Physiol151: 1557–1569.
  • VincentCA, CoenES. 2004. A temporal and morphological framework for flower development in Antirrhinum majus. Can J Bot82: 681–690.
  • WeberlingF. 1989. Morphology of flowers and inflorescences. Cambridge: Cambridge University Press.
  • YanofskyMF, MaH, BowmanJL, DrewsGN, FeldmannKA, MeyerowitzEM. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature346: 35–39.
  • YuH, ItoT, WellmerF, MeyerowitzEM. 2004. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet36: 157–161.
  • ZachgoS, SilvaED, MotteP, TröbnerW, SaedlerH, Schwarz-SommerZ. 1995. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development121: 2861–2875.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.