87
Views
1
CrossRef citations to date
0
Altmetric
Articles

Transgenic overexpression of Leucaena β-carbonic anhydrases in tobacco does not affect carbon assimilation and overall biomass

&

References

  • BadgerMR, PriceGD. 1992. The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiol Plant84(4): 606–615.
  • BadgerMR, PriceGD. 1994. The role of carbonic anhydrase in photosynthesis. Ann Rev Plant Physiol Plant Mol Biol45(1): 369–392.
  • BurnellJN. 2000. Carbonic anhydrases of higher plants: an overview. In: ChegwiddenWR, CarterND, EdwardsYH, editors. The carbonic anhydrases: New horizons. Vol. 90. Basel, Switzerland: Birkhäuser Verlag. pp. 501–517.
  • BurnellJN, GibbsMJ, MasonJG. 1990. Spinach chloroplastic carbonic anhydrase nucleotide sequence analysis of cDNA. Plant Physiol92(1): 37–40.
  • CowanIR. 1986. Economics of carbon fixation in higher plants. In: GivnishTJ, editor. On the economy of plant form and function. Cambridge: Cambridge University Press. pp. 133–170.
  • EdwardsGE, MohamedAK. 1973. Reduction in carbonic anhydrase activity in zinc deficient leaves of Phaseolus vulgaris L. Crop Sci13(3): 351–354.
  • FawcettT, VolokitaM, BartlettS. 1990. Spinach carbonic anhydrase primary structure deduced from the sequence of a cDNA clone. J Biol Chem265(10): 5414–5417.
  • FerreiraFJ, GuoC, ColemanJR. 2008. Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol147(2): 585–594.
  • FettJP, ColemanJR. 1994. Characterization and expression of two cDNAs encoding carbonic anhydrase in Arabidopsis thaliana. Plant Physiol105(2): 707–713.
  • GötzR, GnannA, ZimmermannFK. 1999. Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast15(10A): 855–864.
  • Hewett-EmmettD. 2000. Evolution and distribution of the carbonic anhydrase gene families. In: ChegwiddenWR, CarterND, EdwardsYH, editors. The carbonic anhydrases: New horizons. Vol. 90. Basel, Switzerland: Birkhäuser Verlag. pp. 29–78.
  • Hewett-EmmettD, TashianRE. 1996. Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol5(1): 50–77.
  • HiltonenT, KarlssonJ, PalmqvistK, ClarkeAK, SamuelssonG. 1995. Purification and characterisation of an intracellular carbonic anhydrase from the unicellular green alga Coccomyxa. Planta195(3): 345–351.
  • HoangCV, ChapmanKD. 2002. Biochemical and molecular inhibition of plastidial carbonic anhydrase reduces the incorporation of acetate into lipids in cotton embryos and tobacco cell suspensions and leaves. Plant Physiol128(4): 1417–1427.
  • HoodEE, GelvinSB, MelchersLS, HoekemaA. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res2(4): 208–218.
  • HuH, Boisson-DernierA, Israelsson-NordströmM, BöhmerM, XueS, RiesA, et al. 2009. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol12(1): 87–93.
  • JohLD, WroblewskiT, EwingNN, VanderGheynstJS. 2005. High-level transient expression of recombinant protein in lettuce. Biotechnol Bioeng91: 861–871.
  • KachruRB, AndersonLE. 1974. Chloroplast and cytoplasmic enzymes. Planta118(3): 235–240.
  • KimberMS, PaiEF. 2000. The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases. EMBO J19(7): 1407–1418.
  • MajeauN, ArnoldoMA, ColemanJR. 1994. Modification of carbonic anhydrase activity by antisense and over-expression constructs in transgenic tobacco. Plant Mol Biol25(3): 377–385.
  • MeldrumNU, RoughtonFJW. 1933. Carbonic anhydrase. Its preparation and properties. J Physiol80(2): 113–142.
  • NegiVS, BinghamJ-P, LiQX, BorthakurD. 2014. A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation. Plant Physiol164(2): 922–934.
  • NegiVS, PalA, SinghR, BorthakurD. 2011. Identification of species-specific genes from Leucaena leucocephala using interspecies suppression subtractive hybridisation. Ann Appl Biol159(3): 387–398.
  • OkabeK, YangS-Y, TsuzukiM, MiyachiS. 1984. Carbonic anhydrase: Its content in spinach leaves and its taxonomic diversity studied with anti-spinach leaf carbonic anhydrase antibody. Plant Sci Lett33(2): 145–153.
  • PalA, BorthakurD. 2014. Tissue-specific differential expression of two β-carbonic anhydrases in Leucaena leucocephala under abiotic stress conditions. J Appl Biotechnol2(2): 43–64.
  • PalA, NegiVS, BorthakurD. 2012. Efficient in vitro regeneration of Leucaena leucocephala using immature zygotic embryos as explants. Agrofor Syst84(2): 131–140.
  • PriceGD, CaemmererS, EvansJR, YuJ-W, LloydJ, OjaV, et al. 1994. Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta193(3): 331–340.
  • RandallPJ, BoumaD. 1973. Zinc deficiency, carbonic anhydrase, and photosynthesis in leaves of spinach. Plant Physiol52(3): 229–232.
  • ReedM, GrahamD. 1981. Carbonic anhydrase in plants: distribution, properties and possible physiological roles. In: ReinholdT, HarborneJ, SwainT, editors. Progress in phytochemistry. Vol. 7. Oxford: Pergamon Press. pp. 47–94.
  • RestrepoS, MyersK, Del PozoO, MartinG, HartA, BuellC, et al. 2005. Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Mol Plant-Microbe Interact18(9): 913–922.
  • SlaymakerDH, NavarreDA, ClarkD, del PozoO, MartinGB, KlessigDF. 2002. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci99(18): 11640–11645.
  • SmithKS, CosperNJ, StalhandskeC, ScottRA, FerryJG. 2000. Structural and kinetic characterization of an archaeal β-class carbonic anhydrase. J Bacteriol182(23): 6605–6613.
  • SmithKS, FerryJG. 2000. Prokaryotic carbonic anhydrases. FEMS Microbiol Rev24(4): 335–366.
  • SmithKS, Ingram-SmithC, FerryJG. 2002. Roles of the conserved aspartate and arginine in the catalytic mechanism of an archaeal β-class carbonic anhydrase. J Bacteriol184(15): 4240–4245.
  • SmithKS, JakubzickC, WhittamTS, FerryJG. 1999. Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc Natl Acad Sci96(26): 15184–15189.
  • StropP, SmithKS, IversonTM, FerryJG, ReesDC. 2001. Crystal structure of the “cab”-type β class carbonic anhydrase from the archaeon Methanobacterium thermoautotrophicum. J Biol Chem276(13): 10299–10305.
  • SwaderJ, JacobsonBS. 1972. Acetazolamide inhibition of photosystem II in isolated spinach chloroplasts. Phytochemistry11(1): 65–70.
  • WilburKM, AndersonNG. 1948. Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem176(1): 147–154.
  • WilsonKJ, GillesKE, JeffersonRA. 1991. Beta-glucuronidase (GUS) operon fusion as a tool for studying plant–microbe interactions. In: NesterEW, VermaDPS, editors. Advances in molecular genetics of plant–microbe interactions. Vol. 2. Dordrecht: Kluwer Academic Publishers. pp. 226–229.
  • YagawaY, MiyachiS. 1987. Carbonic anhydrase of a unicellular red alga Porphyridium cruentum Rl. I. purification and properties of the enzyme. Plant Cell Physiol28(7): 1253–1262.
  • ZimmermanSA, FerryJG. 2008. The β and γ classes of carbonic anhydrase. Curr Pharma Des14(7): 716–721.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.