640
Views
48
CrossRef citations to date
0
Altmetric
Articles

Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials

, , , , &

References

  • AfzalM, KhanS, IqbalS, MirzaMS, KhanQM. 2013. Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int Biodeterior Biodegrad85: 331–336. doi:10.1016/j.ibiod.2013.08.022.
  • AfzalM, KhanQM, SessitschA. 2014a. Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere117: 232–242. doi:10.1016/j.chemosphere.2014.06.078.
  • AfzalM, ShabirG, TahseenR, IqbalS, KhanQM, KhalidZM. 2014b. Endophytic Burkholderia sp. strain PsJN improves plant growth and phytoremediation of soil irrigated with textile effluent. Clean Soil Air Water42: 1304–1310. doi:10.1002/clen.201300006.
  • AfzalM, YousafS, ReichenauerTG, KuffnerM, SessitschA. 2011. Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater186: 1568–1575. doi:10.1016/j.jhazmat.2010.12.040.
  • AfzalM, YousafS, ReichenauerTG, SessitschA. 2012. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytorem14: 35–47. doi:10.1080/15226514.2011.552928.
  • APHA. 2005. Standard methods for the examination of water and wastewater. 20th ed., Washington, DC: American Public Health Association.
  • ArshadM, SaleemM, HussainS. 2007. Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol25: 356–362. doi:10.1016/j.tibtech.2007.05.005.
  • AsadS, AmoozegarM, PourbabaeeAA, SarboloukiM, DastgheibS. 2007. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol98: 2082–2088. doi:10.1016/j.biortech.2006.08.020.
  • BaconCW, HintonDM. 2002. Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control23: 274–284. doi:10.1006/bcon.2001.1016.
  • BaiY, D'AoustF, SmithDL, DriscollBT. 2002. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol48: 230–238. doi:10.1139/w02-014.
  • BaracT, TaghaviS, BorremansB, ProvoostA, OeyenL, ColpaertJV, et al. 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol22: 583–588. doi:10.1038/nbt960.
  • ChenC, HuangD, LiuJ. 2009. Functions and toxicity of nickel in plants: Recent advances and future prospects. Clean Soil Air Water37: 304–313. doi:10.1002/clen.200800199.
  • ChenT, KaoC, YehT, ChienH, ChaoA. 2006. Application of a constructed wetland for industrial wastewater treatment: A pilot-scale study. Chemosphere64: 497–502. doi:10.1016/j.chemosphere.2005.11.069.
  • ChenL, LuoS, XiaoX, GuoH, ChenJ, WanY, et al. 2010. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol46: 383–389. doi:10.1016/j.apsoil.2010.10.003.
  • ChenWM, TangYQ, MoriK, WuXL. 2012. Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat Biol15: 99–110. doi:10.3354/ab00422.
  • ChungH, ParkM, MadhaiyanM, SeshadriS, SongJ, ChoH, et al. 2005. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem37: 1970–1974. doi:10.1016/j.soilbio.2005.02.025.
  • CompantS, ClémentC, SessitschA. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem42: 669–678. doi:10.1016/j.soilbio.2009.11.024.
  • DaviesLC, CabritaG, FerreiraR, CariasC, NovaisJ, Martins-DiasS. 2009. Integrated study of the role of Phragmites australis in azo-dye treatment in a constructed wetland: From pilot to molecular scale. Ecol Eng35: 961–970. doi:10.1016/j.ecoleng.2008.08.001.
  • DipuS, AnjuA, KumarV, ThangaSG. 2010. Phytoremediation of dairy effluent by constructed wetland technology using wetland macrophytes. Global J Environ Res4: 90–100.
  • FatimaK, AfzalM, ImranA, KhanQM. 2015. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull Environ Contam Toxicol94: 314–320.
  • GlickBR. 2003. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv21: 383–393. doi:10.1016/S0734-9750(03)00055-7.
  • GlickBR. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv28: 367–374. doi:10.1016/j.biotechadv.2010.02.001.
  • GlickB, ChengZ, CzarnyJ, DuanJ. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol119: 329–339. doi:10.1007/s10658-007-9162-4.
  • GlickBR, StearnsJC. 2011. Making phytoremediation work better: Maximizing a plant's growth potential in the midst of adversity. Int J Phytoremediation13: 4–16. doi:10.1080/15226514.2011.568533.
  • HegazyA, Abdel-GhaniN, El-ChaghabyG. 2011. Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int J Environ Sci Technol8: 639–648. doi:10.1007/BF03326249.
  • KabraAN, KhandareRV, GovindwarSP. 2012. Development of a bioreactor for remediation of textile effluent and dye mixture: A plant-bacterial synergistic strategy. Water Res47: 1036–1048.
  • KhanS, AfzalM, IqbalS, KhanQM. 2013. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere90: 1317–1332. doi:10.1016/j.chemosphere.2012.09.045.
  • KhandareRV, KabraAN, KadamAA, GovindwarSP. 2013. Treatment of dye containing wastewaters by a developed lab scale phytoreactor and enhancement of its efficacy by bacterial augmentation. Int Biodeterior Biodegrad78: 89–97. doi:10.1016/j.ibiod.2013.01.003.
  • KhandareRV, KabraAN, KuradeMB, GovindwarSP. 2011. Phytoremediation potential of Portulaca grandiflora Hook. (Moss-Rose) in degrading a sulfonated diazo reactive dye navy blue HE2R (Reactive Blue 172). Bioresour Technol102: 6774–6777. doi:10.1016/j.biortech.2011.03.094.
  • MastrettaC, TaghaviS, van der LelieD, MengoniA, GalardiF, GonnelliC, et al. 2009. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation11: 251–267. doi:10.1080/15226510802432678.
  • MishraA, NautiyalC. 2009. Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuel-spiked soil amended with Trichoderma ressei using sole-carbon-source utilization profiles. World J Microbiol Biotechnol25: 1175–1180. doi:10.1007/s11274-009-9998-1.
  • MuresuR, PoloneE, SorboliniS, SquartiniA. 2011. Characterization of endophytic and symbiotic bacteria within plants of the endemic association Centaureetum horridae. Mol Plant Biosyst145: 478–484. doi:10.1080/11263504.2011.558723.
  • National Environmental Quality Standards (NEQS). 1997. Pakistan environmental legislation and the national environmental quality standards. Islamabad: Government of Pakistan.
  • NaveedM, MitterB, YousafS, PastarM, AfzalM, SessitschA. 2014. The endophyte Enterobacter sp. FD17: A maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils50: 249–262. doi:10.1007/s00374-013-0854-y.
  • NewmanLA, ReynoldsCM. 2005. Bacteria and phytoremediation: New uses for endophytic bacteria in plants. Trends Biotechnol23: 6–8. doi:10.1016/j.tibtech.2004.11.010.
  • OliveiraV, GomesNCM, AlmeidaA, SilvaAMS, SimõesMMQ, SmallaK, et al. 2014. Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mol Ecol23: 1392–1404. doi:10.1111/mec.12559.
  • OlukanniO, OsuntokiA, GbenleG. 2006. Textile effluent biodegradation potentials of textile effluent-adapted and non-adapted bacteria. Afr J Biotechnol5: 245–254.
  • RahmanMA, HasegawaH. 2011. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere83: 633–646. doi:10.1016/j.chemosphere.2011.02.045.
  • RascheF, HödlV, PollC, KandelerE, GerzabekMH, Van ElsasJD, et al. 2006. Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiol Ecol56: 219–235. doi:10.1111/j.1574-6941.2005.00027.x.
  • RyanRP, GermaineK, FranksA, RyanDJ, DowlingDN. 2008. Bacterial endophytes: Recent developments and applications. FEMS Microbiol Lett278: 1–9. doi:10.1111/j.1574-6968.2007.00918.x.
  • SenanRC, AbrahamTE. 2004. Bioremediation of textile azo dyes by aerobic bacterial consortium aerobic degradation of selected azo dyes by bacterial consortium. Biodegradation15: 275–280. doi:10.1023/B:BIOD.0000043000.18427.0a.
  • SessitschA, CoenyeT, SturzAV, VandammeP, BarkaEA, SallesJF, et al. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol55: 1187–1192. doi:10.1099/ijs.0.63149-0.
  • SessitschA, KuffnerM, KiddP, VangronsveldJ, WenzelW, FallmannK, et al. 2013. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem60: 182–194. doi:10.1016/j.soilbio.2013.01.012.
  • SharmaNK, PandeyJ, GuptaN, JainRK. 2007. Growth and physiological response of Arthrobacter protophormiae RKJ100 toward higher concentrations of o-nitrobenzoate and p-hydroxybenzoate. FEMS Microbiol Lett271: 65–70. doi:10.1111/j.1574-6968.2007.00697.x.
  • ShehzadiM, AfzalM, IslamE, MobinA, AnwarS, KhanQM. 2014. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res58: 152–159. doi:10.1016/j.watres.2014.03.064.
  • TamuraK, DudleyJ, NeiM, KumarS. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol24: 1596–1599. doi:10.1093/molbev/msm092.
  • ToklikishviliN, DandurishviliN, VainsteinA, TediashviliM, GiorgobianiN, LurieS, et al. 2010. Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathol59: 1023–1030. doi:10.1111/j.1365-3059.2010.02326.x.
  • VymazalJ. 2011. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia674: 133–156. doi:10.1007/s10750-011-0738-9.
  • WeyensN, van der LelieD, TaghaviS, VangronsveldJ. 2009. Phytoremediation: Plant-endophyte partnerships take the challenge. Curr Opin Biotechnol20: 248–254. doi:10.1016/j.copbio.2009.02.012.
  • YousafS, AfzalM, ReichenauerTG, BradyCL, SessitschA. 2011. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut159: 2675–2683. doi:10.1016/j.envpol.2011.05.031.
  • YousafS, AndriaV, ReichenauerTG, SmallaK, SessitschA. 2010. Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater184: 523–532. doi:10.1016/j.jhazmat.2010.08.067.
  • ZhouXB, CébronA, BéguiristainT, LeyvalC. 2009. Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue. Chemosphere77: 709–713. doi:10.1016/j.chemosphere.2009.08.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.