191
Views
6
CrossRef citations to date
0
Altmetric
Articles

Effect of copper ions on the ligninolytic enzyme complex and the antioxidant enzyme activity in the white-rot fungus Trametes trogii 46

, , , , , & show all
Pages 1128-1133 | Received 11 Jul 2017, Accepted 14 Dec 2017, Published online: 04 Jan 2018

References

  • Aitken M, Irwine R. 1990. Characterization of reactions catalyzed by manganese peroxidase from Phanerochaete chrysospoiium. Arch Biochem Biophysics 276(2): 405–414.
  • Arora DS, Sharma RK, Chandra P. 2011. Biodelignification of wheat straw and its effect on in vitro digestibility and antioxidant properties. Int Biodeterior Biodegradation 65: 352–358.
  • Asgher M. 2011. Characterization of a novel manganese peroxidase purifi ed from solid state culture of Trametes versicolor IBL-04. Bioresources 6: 4317–4330.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: Improved assay and an assay applicable to polyacrylamide gels. Analyt Biochem 44: 276–287.
  • Beers RF, Sizer IW. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195: 133–140.
  • Berikashvili V, Jokharidze T, Kachlishvili E, Khardziani T, Denchev D, Elisashvili V. 2014. The comparisaon of white-rot basidiomycetes lignocellulolytic potential in wheat straw solid state fermentation. EEEP 1: 69–74.
  • Bourbonnais R, Paice M. 1990. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267(1): 99–102.
  • Canam T, Town J, Iroba K, Tabil L, Dumonceaux T. 2013. Pretreatment of lignocellulosic biomass using microorganisms: Approaches, advantages, and limitations. In: AK Chandel, S Silvério da Silva, editors. Sustainable degradation of lignocellulosic biomass – techniques, applications and commercialization. Rijeka, Croatia: InTech. ISBN 978-953-51-1119-1
  • Claus H. 2004. Laccases: structure, reactions, distribution. Micron 35(1–2): 93–96.
  • Dashtban M, Schraft H, Syed TA, Qin W. 2010. Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1(1): 36–50.
  • De Silóniz MI, Balsalobre L, Alba C, Valderrama MJ, Peinado JM. 2002. Feasibility of Cu uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res Microbiol 153: 173–180.
  • Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI. 2017. Lignin peroxidase functionalities and prospective applications. Microbiology open 6(1): e00394.
  • Farragher N. 2013. Degradation of pesticides by the ligninolytic enzyme laccase [Master ́s thesis]. UppsalaDepartment of Microbiology. Sveriges lantbruksuniversitet, Institutionen för mikrobiologi, p. 6. ISSN 1101-8151.
  • Fonseca MI, Shimizu E, Zapata PD, Villalba LL. 2010. Cu inducing eff ect on laccase production of white rot fungi native from Misiones (Argentina). Enz Microb Technol 46: 534–539.
  • Georgieva NV, Yotova LK, Kolusheva TG, Rangelova NG. 2009. Properties of the ligninolytic enzymes in the extracellular fluids of Phanerochaete chrysosporium 1038. Sci Study Res. X(3): 243–252. ISSN 1582-540X
  • Gochev V, Krastanov A. 2007. Isolation of laccase producing Trichoderma spp. Bulg J Agric Sci. 13: 171–176. ISSN 1310-0351
  • Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez ÁT, Guillén F. 2009. Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Appl Environ Microbiol. 75: 3944–3953.
  • Hammel KE, Cullen D. 2008. Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol. 11(3): 349–355.
  • Hartikainen ES, Lankinen P, Rajasärkkä J, Koponen H, Virta M, Hatakka A, Kähkönen M. 2012. A Impact of Cu and zinc on the growth of saprotrophic fungi and the production of extra cellular enzymes. Boreal Environ Res. 17(3/4): 210–218.
  • Higuchi T. 1990. Lignin biochemistry: Biosynthesis and biodegradation. Wood Sci Technol 24: 23–63.
  • Hofrichter M, Vares T, Kalsi M, Galkin S, Scheibner K, Fritsche W, Hatakka A. 1999. Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Appl Environ Microbiol 65: 1864–1870.
  • Karaman MA, Mimica-Dukić NM, Matavulj MN. 2005. Lignicolous fungi as potential natural sources of antioxidants. Arch Biol Sci Belgrade 57(2): 93–100.
  • Khammuang S, Yuwa-amornpitak T, Svasti J, Sarnthima R. 2013. Cu induction of accases by Lentinus polychrous under liquidstate- fermentation. Biocatal Agric Biotechnol 2: 357–362.
  • Krumova E, Kostadinova N, Miteva-Staleva J, Gryshko V, Angelova M. 2016. Cellular response to Cu- and Zn-induced oxidative stress in Aspergillus fumigatus isolated from polluted soils in Bulgaria. Clean 44(6): 657–666.
  • Krumova EZ, Pashova SB, Dolashka-Angelova PA, Stefanova T, Angelova MB. 2009. Biomarkers of oxidative stress in the fungal strain Humicola lutea under Cu exposure. Proc Biochem 44(3): 288–295.
  • Kunamneni A, Plou FJ, Ballesteros A, Alcalde M. 2008. Laccases and their applications: a patent review. Madrid: Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049. http://digital.csic.es/bitstream/10261/9595/1/postprint_laccase_patent_review.pdf.
  • Levin I, Forchiassin F, Ramos AM. 2002. Cu induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia 94: 377–383.
  • Lomascolo A, Uzan-Boukhris E, Herpoël-Gimbert I, Sigoillot JC, Lesage-Meessen L. 2011. Peculiarities of Pycnoporus species for applications in biotechnology. Appl Microbiol Biotechnol 92(6): 1129–1149.
  • Lowry OH, Rosenbrough HJ, Faar AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275.
  • Maciel GM, Inacio FD, de Sa-Nakanishi AB, Windson C, Haminiuk I, Castoldi R, Comar FJ, Bracht A, Peralt RM. 2013. Response of Ganoderma lucidum and Trametes sp. to the herbicide picloram: tolerance, antioxidants and production of ligninolytic enzymes. Pestic Biochem Physiol 105: 84–92.
  • Oyadomari M, Shinohara H, Johjima T, Wariishi H, Tanaka H. 2003. Electrochemical characterization of lignin peroxidase from the white-rot basidiomycete Phanerochaete chrysosporium. J Mol Catal B: Enzym 21(4–6): 291–297.
  • Palanisami S, Lakshmanan U. 2011. Role of Cu in poly R-478 decolorization by the marine cyanobacterium Phormidium valderianum BDU140441. WJMB. 27: 669–677.
  • Rabinovich ML, Bolobova AV, Vasilchenko LG. 2004. Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl Biochem Microbiol 40: 1–17.
  • Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, Pedroza-Rodríguez AM, RodrÍguez-Vázquez R, Delgado-Boada JM. 2013. Fungal laccases. Fungal Bio Rev 27: 67–82.
  • Rodríguez S, Toca JL. 2006. Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24(5): 500–513.
  • Ruiz-Dueñas FJ, Martínez AT. 2009. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2(2): 164–177.
  • Savino E, Girometta C, Miteva-Staleva J, Kostadinova A, Krumova E. 2016. Wood decay macrofungi: Strain collection and studies about antioxidant properties. Compt Rend Acad Bulg Sci 69(6): 747–755.
  • Shah MP, Reddy GV, Banerjee R, Babu PR, Kothari IL. 2005. Microbial degradation of banana wastes under solid state bioprocessing using two lignocellulolytic fungi Phylostica spp. MPS-001 and Aspergillus spp MPS-002. Proc Biochem 40: 445–451.
  • Silva MLC, de Souza VB, da Silva Santos V, Kamida HM, de Vasconcellos-Neto JRT, Góes-Neto A, Koblitz MGB. 2014. Production of Manganese Peroxidase by Trametes villosa on Unexpensive substrate and its application in the removal of lignin from agricultural wastes. Adv Biosci Biotechnol 5: 1067–1077.
  • Somogy M. 1952. Notes on sugar determination. J Biol Chem 195: 19–23.
  • Thuillier A, Chibani K, Belli G, Herrero E, Dumarçay S, Gérardin Ph, Kohler A, Deroy A, Dhalleine T, Bchini R, et al. 2014. Transcriptomic Responses of Phanerochaete chrysosporium to Oak Acetonic Extracts: Focus on a New Glutathione Transferase. Appl Environ Microbiol 80(20): 6316–6327.
  • Tinoco R, Acevedo A, Galindo E, Serrano-Carreón L. 2011. Increasing Pleurotus ostreatus laccase production by culture medium optimization and Cu/lignin synergistic induction. J Ind Microbiol Biotechnol 38: 531–540.
  • Vikineswary S, Abdullah N, Renuvathani M, Sekaran M, Pandey A, Jones GEB. 2006. Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. Biores Technol 97(1): 171–177.
  • Vrsanska M, Buresova A, Damborsky P, Adam V. 2015. Influence of different inducers on ligninolytic enzyme activities. J Metal Nanotechnol 3: 64–70.
  • Worrall JJ, Anagnost SE, Zabel RA. 1997. Comparison of wood decay among diverse lignicolous fungi. Mycologia 1997(89): 199–219.
  • Xiao Q, Ma F, Li Y, Yu H, Li C, Zhang X. 2017. Differential proteomic profiles of Pleurotus ostreatus in response to lignocellulosic components provide insights into divergent adaptive mechanisms. Front Microbiol 8: 480. doi:10.3389/fmicb.2017.00480g.
  • Yang Y, Fan F, Zhuo R, Ma F, Gong Y, Wan X, Jiang M, Zhang X. 2012. Expression of the laccase gene from a White Rot Fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Appl Environ Microbiol 78(16): 5845–5854.
  • Zhao Y, Li J, Chen Y, Hang H. 2009. Response to oxidative stress of Coriolus versicolor induced byexogenous hydrogen peroxide and paraquat. Ann Microbiol 59(2): 221–227.
  • Zhao W-J, An C-H, Long D-D, Zhang Z-Q, Han J-R. 2014. Effect of Cu-induced oxidative stress on sclerotial differentiation and antioxidants contents of Penicillium thomii Q1. J Basic Microbiol 54: 1395–1402.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.