292
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Comprehensive meta-analysis and co-expression network analysis identify candidate genes for salt stress response in Arabidopsis

, , , , , & ORCID Icon show all
Pages 367-377 | Received 02 Nov 2017, Accepted 12 Jun 2018, Published online: 31 Jul 2018

References

  • Agarwal PK, Shukla PS, Gupta K, Jha B. 2013. Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol. 54:102–123.10.1007/s12033-012-9538-3
  • Alba R, Giovannoni JJ. 2005. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell. 17:2954–2965.10.1105/tpc.105.036053
  • Alexa A, Rahnenfuhrer J. 2006. topGO: Enrichment analysis for Gene Ontology. R Package Version.
  • Allu AD, Soja AM, Wu A, Szymanski J, Balazadeh S. 2014. Salt stress and senescence: identification of cross-talk regulatory components. J Exp Bot. 65:3993–4008.10.1093/jxb/eru173
  • Alvord WG, Roayaei JA, Quiñones OA, Schneider KT. 2007. A microarray analysis for differential gene expression in the soybean genome using Bioconductor and R. Brief Bioinform. 8:415–431.10.1093/bib/bbm043
  • Atkinson NJ, Lilley CJ, Urwin PE. 2013. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162:2028–2041.10.1104/pp.113.222372
  • Bonthala VS, Mayes K, Moreton J, Blythe M, Wright V, May ST, Massawe F, Mayes S, Twycross J. 2016. Identification of gene modules associated with low temperatures response in bambara groundnut by network-based analysis. PLOS One. 11:e0148771.10.1371/journal.pone.0148771
  • Chan Z, Grumet R, Loescher W. 2011. Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. J Exp Bot. 62:4787–4803.10.1093/jxb/err130
  • Chandran AKN, Jeong HY, Jung KH, Lee C. 2016. Erratum to development of functional modules based on co-expression patterns for cell-wall biosynthesis related genes in rice. J Plant Biol. 59(4):405–405.10.1007/s12374-016-0901-y
  • Chien PS, Nam HG, Chen YR. 2015. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. J Exp Bot. 66:5301–5313.10.1093/jxb/erv263
  • Das M, Haberer G, Panda A, Das Laha S, Ghosh TC, Schaffner AR. 2016. Expression pattern similarities support the prediction of orthologs retaining common functions after gene duplication events. Plant Physiol. 171:2343–2357.
  • Gabrijel Ondrasek ZR, Veres S. 2011. Soil salinisation and salt stress in crop production. Abiotic Stress in Plants – Mechanisms and Adaptations. InTech. 171–190.
  • Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PM, Tham C, Duan L, Dinneny JR. 2013. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell. 25:2132–2154.10.1105/tpc.113.112896
  • Guan Q, Wu J, Yue X, Zhang Y, Zhu J. 2013. A nuclear calcium-sensing pathway is critical for gene regulation and salt stress tolerance in Arabidopsis. PLoS Genet. 9:e1003755.10.1371/journal.pgen.1003755
  • Hanada K, Higuchi-Takeuchi M, Okamoto M, Yoshizumi T, Shimizu M, Nakaminami K, Nishi R, Ohashi C, Iida K, Tanaka M. 2013. Small open reading frames associated with morphogenesis are hidden in plant genomes. P Natl Acad Sci USA. 110:2395–2400.10.1073/pnas.1213958110
  • Hartmann L, Pedrotti L, Weiste C, Fekete A, Schierstaedt J, Göttler J, Kempa S, Krischke M, Dietrich K, Mueller MJ. 2015. Crosstalk between two bZIP signaling pathways orchestrates salt-Induced metabolic reprogramming in Arabidopsis roots. Plant Cell. 27:2244–2260.10.1105/tpc.15.00163
  • Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57.10.1038/nprot.2008.211
  • Huang YC, Niu CY, Yang CR, Jinn TL. 2016. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol. 172:1182–1199.
  • Jha PK, Vijay A, Sahu A, Ashraf MZ. 2016. Comprehensive Gene expression meta-analysis and integrated bioinformatic approaches reveal shared signatures between thrombosis and myeloproliferative disorders. Sci Rep. 6:37099.10.1038/srep37099
  • Jung C, Seo JS, Sang WH, Koo YJ, Kim CH, Sang IS, Nahm BH, Yang DC, Cheong JJ. 2008. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol. 146:623–635.
  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD. 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev. 1–36.
  • Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167:645–663.10.1111/nph.2005.167.issue-3
  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M. 2012. Wheat grain yield on saline soils is improved by an ancestral Na⁺ transporter gene. Nat Biotechnol. 30:360–364.10.1038/nbt.2120
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59:651–681.10.1146/annurev.arplant.59.032607.092911
  • Mutwil M, Usadel B, Schütte M, Loraine A, Ebenhöh O, Persson S. 2010. Assembly of an interactive correlation network for the arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol. 152:29–43.10.1104/pp.109.145318
  • Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2012. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One. 7:e32124.10.1371/journal.pone.0032124
  • Ohme-Takagi M, Shinshi H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 7:173–182.10.1105/tpc.7.2.173
  • Qiang L, Yong Z, Chen S. 2000. Plant protein kinase genes induced by drought, high salt and cold stresses. Sci Bull. 45:1153–1157.
  • Qiu Z, Guo J, Zhu A, Zhang L, Zhang M. 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotox Environ Safe. 104:202–208.10.1016/j.ecoenv.2014.03.014
  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E. 2010. ABA perception and signalling. Trends Plant Sci. 15:395–401.10.1016/j.tplants.2010.04.006
  • Romerocampero FJ, Lucasreina E, Said FE, Romero JM, Valverde F. 2013. A contribution to the study of plant development evolution based on gene co-expression networks. Front Plant Sci. 4:291.
  • Ryu H, Cho YG. 2015. Plant hormones in salt stress tolerance. J Plant Biol. 58:147–155.10.1007/s12374-015-0103-z
  • Shabala S, Munns R. 2012. Salinity stress: physiological constraints and adaptive mechanisms. In: Shabala S, editor. Plant stress physiology. Oxfordshire: Cabi Publishing; pp. 59–93.
  • Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S. 2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 52:344–360.10.1093/pcp/pcq196
  • Song BH, Mitchell-Olds T. 2011. Evolutionary and ecological genomics of non-model plants. J Syst Evol. 49:17–24.10.1111/jse.2011.49.issue-1
  • Song J, Shi WW, Liu RR, Xu YG, Sui N, Zhou JC, Feng G. 2017. The role of the seed coat in adaptation of dimorphic seeds of the euhalophyte Suaeda salsa to salinity. Plant Spec Biol. 32:107–114.10.1111/psbi.2017.32.issue-2
  • Song J, Wang BS. 2015. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann Bot. 115:541–553.10.1093/aob/mcu194
  • Supek F, Bošnjak M, Škunca N. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800.10.1371/journal.pone.0021800
  • Tseng GC, Ghosh D, Feingold E. 2012. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res. 40:3785–3799.10.1093/nar/gkr1265
  • Xia J, Benner MJ, Hancock RE. 2014. NetworkAnalyst–integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Res. 42:167–174.10.1093/nar/gku443
  • Xia J, Gill EE, Hancock RE. 2015. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc. 10:823–844.10.1038/nprot.2015.052
  • Yu G, Zang W, Yang X, Wang L, Tang Z, Luo P. 2011. Meta-analysis of Arabidopsis thaliana under abscisic acid and salt stress. J Med Plants Res. 5:5889–5893.
  • Yuan F, Leng BY, Wang BS. 2016. Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Front Plant Sci. 7:977–989.
  • Yuan F, Lyu MJ, Leng BY, Zheng GY, Feng ZT, Li PH, Zhu XG, Wang BS. 2015. Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation. Plant Cell Environ. 38:1637–1657.10.1111/pce.2015.38.issue-8
  • Zhang LY, Zhang XJ, Fan SJ. 2017. Meta-analysis of salt-related gene expression profiles identifies common signatures of salt stress responses in Arabidopsis. Plant Syst Evol. 303:757–774.10.1007/s00606-017-1407-x
  • Zhang SR, Song J, Wang H, Feng G. 2010. Effect of salinity on seed germination, ion content and photosynthesis of cotyledons in halophytes or xerophyte growing in Central Asia. J Plant Ecol. 3:259–267.10.1093/jpe/rtq005
  • Zhang Z, Wang J, Zhang R, Huang R. 2012. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J. 71:273–287.10.1111/tpj.2012.71.issue-2
  • Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M, Dai X, Martin GB, Giovannoni JJ. 2016. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant 9:1667–1670.10.1016/j.molp.2016.09.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.