139
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Abscisic acid alters carbohydrate accumulation induced by differential response to sodium salts in the halophyte Prosopis strombulifera

, , , &
Pages 337-347 | Received 14 Dec 2018, Accepted 26 Mar 2019, Published online: 04 Jun 2019

References

  • Abideen Z, Koyro HW, Huchzermeyer B, Ahmed MZ, Gul B, Khan MA. 2014. Moderate salinity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation. Environ Exp Bot. 105:70–76.
  • Albert R, Acharya BR, Jeon BW, Zañudo JG, Zhu M, Osman K, Assmann SM. 2017. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops. PLoS Biol. 15(9):e2003451.
  • Bartolozzi F, Bertazza G, Bassi D, Cristoferi G. 1997. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J Chromatogr. 758(1):99–107.
  • Burguess J. 1983. An improved photometer. Sch Sci Rev. 64:699–701.
  • Burkart A. 1976. A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J Arnold Arboretum. 450:525.
  • Cabot C, Sibole JV, Barceló J, Poschenrieder C. 2009. Abscisic acid decreases leaf Na + exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul . 28(2):187–192.
  • Chow PS, Landhäusser SM. 2004. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol. 24(10):1129–1136.
  • Devinar G, Llanes A, Masciarelli O, Luna V. 2013. Abscisic acid and salicylic acid levels induced by different relative humidity and salinity conditions in the halophyte Prosopis strombulifera. Plant Growth Regul. 70:247–256.
  • Devinar G. 2015. Papel del ácido abscisico, salicílico, etileno y óxido nítrico en la homeostasis iónica y tolerancia a salinidad de Prosopis strombulifera. PhD Thesis. Universidad Nacional de Río Cuarto, Argentina.
  • Felker P. 2007. Unusual physiological properties of the arid adapted tree legume Prosopis and their applications in developing countries. In: De la Barrera E, Smith J, editors. Perspectives in biophysical plant ecophysiology a tribute to park nobel. Mildred E. Mathias Botanical Garden. USA: University of California; p. 1–41.
  • Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics. 2014:1.
  • Gurmani AR, Bano A, Ullah N, Khan H, Jahangir M, Flowers TJ. 2013. Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice ('Oryza sativa'indica). Aust J Crop Sci. 7(9):1219.
  • Han Y, Yin S, Huang L. 2015. Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regul. 76(1):13–23.
  • Hoagland D, Arnon D. 1950. The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
  • Hussain MI, Lyra D, Farooq M, Nikoloudakis N, Khalid N. 2016. Salt and drought stresses in safflower: a review. Agron Sustain Dev. 36(1):4.
  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Shi H. 2004. Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol. 135(3):1718–1737.
  • Koyro HW, Hussain T, Huchzermeyer B, Khan MA. 2013. Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ Exp Bot. 91:22–29.
  • Kumari A, Das P, Parida AK, Agarwal PK. 2015. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci. 6:537.
  • Lastdrager J, Hanson J, Smeekens S. 2014. Sugar signals and the control of plant growth and Development. J Exp Bot. 65(3):799–807.
  • Lavado R. 2008. Visión sintética de la distribución y magnitud de los suelos afectados por salinidad en la Argentina. In: Taleisnik E, Grunberg K, Santa María G, editors. La salinización de suelos en Argentina: Su impacto en la producción agropecuaria. Argentina: Universidad Católica de Córdoba. p. 11–15.
  • Li H, Yan S, Zhao L, Tan J, Zhang Q, Gao F, Wang P, Hou H, Li L. 2014. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol. 14(1):105.
  • Llanes A, Bertazza G, Palacio G, Luna V. 2013. Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biol. 15:118–125.
  • Llanes A, Masciarelli O, Ordoñez R, Isla M, Luna V. 2014. Differential growth responses to sodium salts involve different ABA catabolism and transport in the halophyte Prosopis strombulifera. Biol Plant. 58(1):80–88.
  • Murcia G, Pontin M, Reinoso H, Baraldi R, Bertazza G, Gómez-Talquenca S, Bottini R, Piccoli PN. 2016. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non‐structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Physiol Plantarum. 156(3):323–337.
  • Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S. 2014. Halophyte agriculture: success stories. Environ Exp Bot. 107:71–83.
  • Peleg Z, Blumwald E. 2011. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol. 14(3):290–295.
  • Reginato M, Sosa L, Llanes A, Hampp E, Vettorazzi N, Reinoso H, Luna V. 2014. Growth responses and ion accumulation in the halophytic legume Prosopis strombulifera are determined by Na2SO4 and NaCl. Plant Biol (Stuttg). 16(1):97–106.
  • Reinoso H, Sosa L, Ramírez L, Luna V. 2004. Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot. 82(5):618–628.
  • Reinoso H, Sosa L, Reginato M, Luna V. 2005. Histological alterations induced by sodium sulfate in the vegetative anatomy of Prosopis strombulifera (Lam.) Benth. World J Agric Sci. 2:109–119.
  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia‐Sanchez F, Martinez V. 2014. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 37(5):1059–1073.
  • Roussos PA, Vemmos SN, Pontikis CA. 2005. The role of carbohydrates on the salt tolerance of jojoba Simmondsia chinensis explants in vitro. Eur J Hort Sci. 1:278–282.
  • Rozema J, Schat H. 2013. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ Exp Bot. 92:83–95.
  • Saeedipour S. 2011. Salinity tolerance of rice lines related to endogenous abscisic acid (ABA) level synthesis under stress. Afr J Plant Sci. 11:628–633.
  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S. 2016. Role of sugars under abiotic stress. Plant Physiol Biochem. 109:54–61.
  • Shabala S. 2013. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot. 112(7):1209–1221.
  • Shinopoulos KE, Brudvig GW. 2012. Cytochrome b559 and cyclic electron transfer within photosystem II. Biochim Biophys Acta. 1817(1):66–75.
  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot. 115(3):433–447.
  • Smeekens S, Ma J, Hanson J, Rolland F. 2010. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol. 13(3):273–278.
  • Sosa L, Llanes A, Reinoso H, Reginato M, Luna V. 2005. Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann Bot. 96(2):261–267.
  • Steel RGD, Torrie JH. 1996. Principles and procedures of statistics: a biometrical approach. New York, USA: Mc Graw-Hill, p. 195–233.
  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. 2014. Abiotic and biotic stress combinations. New Phytol. 203(1):32–43.
  • Zhang X, Wang X, Wang X, Xia GH, Pan QH, Fan RC, Wu F, Yu X, Zhang D. 2006. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol. 142(1):220–232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.