310
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Morphological and biochemical changes in maize under drought and salinity stresses in a semi-arid environment

, , , , &
Pages 396-404 | Received 16 Jan 2019, Accepted 07 May 2019, Published online: 04 Jul 2019

References

  • Abdallah NA, Moses V, Prakash CS. 2014. The impact of possible climate changes on developing countries: the needs for plants tolerant to abiotic stresses. GM Crops Food. 5(2):77–80.
  • Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P. 2016. Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front Plant Sci. 7:2035.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplast polyphenoloxidases in Beta vulgaris. Plant Physiol. 24(1):1–15.
  • Ashraf M, Foolad M. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 59(2):206–216.
  • Azizian A, Sepaskhah AR. 2014. Maize response to water, salinity and nitrogen levels: physiological growth parameters and gas exchange. Int J Plant Prod. 8:131–162.
  • Barrs H. 1968. Determination of water deficit in plant tissues. In: Water deficit and plant growth. New York (NY): Academic Press. pp. 235–368.
  • Bouvier F, Isner JC, Dogbo O, Camara B. 2005. Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci. 10(4):187–194.
  • Carillo P, Mastrolonardo G, Nacca F, Parisi D, Verlotta A, Fuggi A. 2008. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Funct Plant Biol. 35(5):412–426.
  • Carillo P. 2018. GABA shunt in durum wheat. Front Plant Sci. 9:100.
  • Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S. 2005. Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ. 28(10):1230–1246.
  • Chen Z, Shabala S, Mendham N, Newman I, Zhang G, Zhou M. 2008. Combining ability of salinity tolerance on the basis of NaCl-induced K+ flux from roots of barley. Crop Sci. 48(4):1382–1388.
  • Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S. 2009. Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol. 36(12):1110–1119.
  • De Azevedo Neto AD, Prisco JT, Enéas-Filho J, De Abreu CEB, Gomes-Filho E. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot. 56(1):87–94.
  • Demmig-Adams B, Adams WW. 1996. III. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1(1):21–26.
  • Farnia A, Khodabandehloo S. 2015. Changes in yield and its components of maize (Zea mays L.) to foliar application of zinc nutrient and mycorrhiza under water stress condition. Int J Life Sci. 9(5):75–80.
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S. 2009. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 29(1):185–212.
  • Farooq M, Hussain M, Wakeel A, Siddique K. 2015. Salt stress in maize: effects, resistance mechanisms and management. A review. Agron Sustain Dev. 35(2):461–481.
  • Ferchichi S, Hessini K, Dell'Aversana E, D'Amelia L, Woodrow P, Ciarmiello LF, Fuggi A, Carillo P. 2018. Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Funct Plant Biol. 45(11):1096–1109.
  • Flower DJ, Ludlow MM. 1986. Contribution of osmotic adjustment to the dehydration tolerance of water‐stressed pigeon pea (Cajanus cajan (L.) millsp.) leaves. Plant Cell Environ. 9:33–40.
  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol. 164(6):728–736.
  • Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. 2014:1.
  • Hachicha M. 2007. Les sols sales et leur mise en valeur en Tunisie. Sècheresse. 18:121–140.
  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. 2012. Role of proline under changing environments: a review. Plant Signal Behav. 7(11):1456–1466.
  • Joseph EA, Radhakrishnan VV, Mohanan KV. 2015. A Study on the accumulation of Proline-an osmoprotectant amino acid under salt stress in some native rice cultivars of north Kerala, India. Uni J Agr Res. 3:15–22.
  • Kaya C, Tuna AL, Alfredo AA. 2006. Gibberellic acid improves water deficit tolerance in maize plants. Acta Physiol Plant. 28(4):331–337.
  • Kholova J, Sairam RK, Meena RC. 2010. Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiol Plant. 32(3):477–486.
  • Moharramnejad S, Sofalian O, Valizadeh M, Asgari A, Shiri M. 2015. Proline, glycine betaine, total phenolics and pigment contents in response to osmotic stress in maize seedlings. J Biol Sci Biotechnol. 4:313–319.
  • Munns R, James RA, Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot. 57(5):1025–1043.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59:651–681.
  • Nahar K, Hasanuzzaman M, Fujita M. 2016. Roles of osmolytes in plant adaptation to drought and salinity. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. New Delhi: Springer. pp. 37–68.
  • Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusià J, Garbulsky M, et al. 2013. Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Chang Biol. 19(8):2303–2338.
  • Pessarakli M, Haghighi M, Sheibanirad A. 2015. Plant responses under environmental stress conditions. Adv Plants Agri Res. 2(6):276–286.
  • Radhouane L. 2009. La photosynthèse du mil (Pennisetum glaucum (L.) R. Br.) en présence de contrainte hydrique et saline. J Agri Environ Int Dev. 103:185–200.
  • Romdhane L, Dal Cortivo C, Vamerali T, Radhouane L. 2016. Effects of drought and salinity on maize phenology, morphology and productivity in a semi-arid environment. Ital J Agrometeor. 3:43–54.
  • Radhouane L. 2013. Comparaison de la nutrition minérale du mil (Pennisetum glaucum L.R. Br.) en présence de stress hydrique et de stress salin. J Appl Biosci. 66(0):5114–5129.
  • Rajasekar M, Gabriel AR, Paramasivam M. 2016. The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (maize) under drought stress. Appl Nanosci. 6(5):727–735.
  • Ruan Y, El-Hendawy SE, Hu Y, Schmidhalter U. 2007. Differential effect of moderate salinity on growth and ion contents in the mainstem and subtillers of two wheat genotypes. Soil Sci Plant Nutr. 53(6):782–791.
  • Sarr B, Diouf O, Diouf M, Roy-Macauley H, Ndjendole S. 1999. Suivi de l’état hydrique du sol et de la température du couvert de maïs au Sénégal. Sci et Planétaires/Sécheresse. 10:129–135.
  • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9(7):671–675.
  • Shabala S. 2013. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot. 112(7):1209–1221.
  • Shah SH, Houborg R, McCabe MF. 2017. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L). Agronomy. 7, 61:1–21.
  • Sinay H, Karuwal RS. 2014. Proline and total soluble sugar content at the vegetative phase of six corn cultivars from Kisar island Maluku, grown under drought stress conditions. Int J Adv Agri Res. 2:77–82.
  • Sinay H, Arumingtyas EL, Harijati N, Indriyani S. 2015. Proline content and yield com- ponents of local corn cultivars from Kisar Island, Maluku, Indonesia. Int J Plant Biol. 6(6071):43–46.
  • Troll W, Lindsley J. 1955. A photometric method for the determination of proline. J Biol Chem. 215(2):655–660.
  • Tuna AL, Kaya C, Dikilitas M, Higgs D. 2008. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot. 62(1):1–9.
  • Turan MA, Elkarim AHA, Taban N, Taban S. 2009. Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. Afr J Agric Res. 4:893–897.
  • USEPA. 1995. EPA method 3052: microwave assisted acid digestion of siliceous and organically based matrices. In: Test methods for evaluating solid waste, 3rd ed. Washington DC: U.S. Environmental Protection Agency.
  • Valentovič P, Luxova M, Kolarovic L, Gasparikova O. 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ. 52:184–191.
  • Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D'Amelia L, Dell'Aversana E, Piccolella S, Fuggi A, Carillo P. 2017. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol Plant. 159(3):290–312.
  • Yemm EW, Willis AJ. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 57(3):508–514.
  • Zeid IM. 2009. Trehalose as osmoprotectant for maize under salinity-induced stress. Res. J Agric Biol Sci. 5:613–622.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.