1,084
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Effect of the foliar application of zinc oxide nanoparticles on some biochemical and physiological parameters of Trigonella foenum-graecum under salinity stress

, , &
Pages 267-280 | Received 30 Apr 2019, Accepted 12 Feb 2020, Published online: 23 Mar 2020

References

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Egamberdieva D, Bhardwaj R, Ashraf M. 2017. Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern and Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. J Plant Interact. 12(1):429–437.
  • Aravind P, Prasad M. 2003. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem. 41(4):391–397.
  • Arif M, Jan T, Riaz M, Fahad S, Arif MS, Shakoor MB, Amanullah, Rasool, F. 2019. Chapter 29: Advances in rice research for abiotic stress tolerance: Agronomic Approaches to improve rice production under abiotic stress. In: Hasanuzzaman M, Fujita M, Nhar K, Biswaz J, editors.Advances in rice research for abiotic stress tolerance. 1st ed. Elsevier Inc.; p. 585–614.
  • Ashihara H, Ludwig IA, Katahira R, Yokota T, Fujimura T, Crozier A. 2014. Trigonelline and related nicotinic acid metabolites: occurrence, biosynthesis, taxonomic considerations, and their roles in planta and in human health. Phytochemistry Rev. 1:765–798.
  • Ashraf MY, Iqbal N, Ashraf M, Akhter J. 2014. Modulation of physiological and biochemical metabolites in salt stress rice by foliar application of zinc. J Plant Nutr. 37(3):447–457.
  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, Jose-Yacaman M, Peralta-Videa JR, Gardea-Torresdey JL. 2015. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with in soil. Sci Total Environ. 516:60–69.
  • Bates LS, Waldern RP, Tare ID. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 29:205–207.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254.
  • Buendia-Gonzalez L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Diaz CE, Vernon-Carter EJ. 2010. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol. 101:5862–5867.
  • Dhindsa RS, Matowe W. 1981. Drought tolerance in two mosses: correlation with enzymatic defense against lipid peroxidation. J Exp Bot. 32(1):79–91.
  • Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ. 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res. 14(9):1–15.
  • Du W, Tan W, Yin Y, Ji R, Peralta-Videa JR, Guo H, Gardea-Torresdey JL. 2018. Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). Sci Total Environ. 618:306–312.
  • Fathi A, Zahedi M, Torabian S, Khoshgoftar A. 2017. Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J Plant Nutr. 40(10):1376–1385.
  • Filippou P, Bouchagier P, Skotti E, Fotopoulos V. 2014. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ Exp Bot. 97:1–10.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutase. I. occurrence in higher plants. Plant Physiol. 59(2):309–314.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplast. I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1):189–198.
  • Hura T, Szewczyk-Taranek B, Hura K, Nowak K, Pawtowska B. 2017. Physiological responses of Rosa rubiginosa to saline environment. Water Air Soil Pollut. 228(2):1–11.
  • Jan AU, Hadi F, Nawaz MA, Rahman K. 2017. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiol Biochem. 116:139–149.
  • Jiang Y, Ding X, Zhang D, Deng Q, Yu C-L, Zhou S, Hui D. 2017. Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Environ Exp Bot. 133:70–77.
  • Kapoor N, Arif M, Pande V. 2013. Antioxidative defense to salt stress in Trigonella foenum-graecum L. Int J Curr Discov Innovs. 2:123–127.
  • Kar M, Mishra D. 1976. Catalase, peroxidase, polyphenol oxidase activities during rice senescence. Plant Physiol. 57(2):315–319.
  • Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. 2017. Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem. 110:194–209.
  • Latef AAHA, Alhmad MFA, Abdelfattah KE. 2017. The possible roles of priming with ZnO nanoparticles in Mitigation of salinity stress in Lupine (Lupinus termis) plants. J Plant Growth Regul. 36(1):60–70.
  • Lee MH, Cho EJ, Wi SG, Bae H, Kim JE, Cho J-Y, Lee S, Kim J-H, Chung BY. 2013. Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiol Biochem. 70:325–335.
  • Lim J-H, Park K-J, Kim B-K, Jeong J-W, Kim H-J. 2012. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem. 135(3):1065–1070.
  • Makowska J, Szczesny D, Lichucka A, Giełdoń A, Chmurzyński L, Kaliszan R. 2014. Preliminary studies on trigonelline as potential anti-Alzheimer disease agent: determination by hydrophilic interaction liquid chromatography and modeling of interactions with beta-amyloid. J Chromatogr B. 968:101–104.
  • Mazzuca S, Bitonti MB, Innocenti AM, Francis D. 2000. Inactivation of DNA replication origins by the cell cycle regulator, trigonelline, in root meristems of Lactuca sativa. Planta. 211(1):127–132.
  • Minguez-Mosquera MI, Jaren-Galan M, Garrido-Fernandez J. 1993. Lipoxygenase activity during pepper ripening and processing of paprika. Phytochemistry. 32(5):1103–1108.
  • Mizuno K, Matsuzaki M, Kanazawa S, Tokiwano T, Yoshizawa Y, Kato M. 2014. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B0 methyltransferase family in Coffea Arabica. Biochem Biophys Res Commun. 452(4):1060–1066.
  • Mohamed MS, Kumar DS. 2016. Chapter 6: Effect of nanoparticles on plants with regard to physiological attributes. In: Kole C, Kumar DS, Khodakovskaya MV, editors. Plant nanotechnology. Springer; p.119–153.
  • Mousavi Kouhi SM, Mehrdad Lahouti M, Ganjeali A, Entezari MH. 2015. Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn2+ on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation. Water Air Soil Pollut. 1–11.
  • Olthof MR, Dijk AE, Deacon CF, Heine RJ, Dam RM. 2011. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on incretin hormones. Nutr Metab 8:10.
  • Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 60(3):324–349.
  • Pasandi Pour A, Farahbakhsh H, Saffari M. 2014. Response of fenugreek to short-term salinity stress in relation to lipid peroxidation, antioxidant activity and protein content. Ethno-Pharma Prod. 1(1):45–52.
  • Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL. 2014. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem. 80:128–135.
  • Plewa MJ, Smith SR, Wagner ED. 1991. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutat Res. 247(1):57–64.
  • Rao S, Shekhawat GS. 2014. Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng. 2(1):105–114.
  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-Ur-Rehman M, Farid M, Abbas F. 2017. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater. 322:2–16.
  • Servin AD, De la Torre-Roche R, Castillo-Michel H, Pagano L, Hawthorne J, Musante C, Pignatello J, Uchimiya M, White JC. 2017. Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiol Biochem. 110:147–157.
  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S. 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol. 167(8):2225–2233.
  • Shaw AK, Hossain Z. 2013. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere. 93(6):906–915.
  • Shimizu MM, Mazzafera P. 2000. A role for Trigonelline during imbibition and germination of coffee seeds. Plant Biol. 2(6):605–611.
  • Shukla PK, Shukla S, Rajoriya P, Misra P. 2018. Enhancing crop productivity in saline environment using nanobiotechnology. In: Kumar V, Wani SH, Suprasanna P, Tran L-SP, editors. Salinity responses and tolerance in plants. Vol. 2. Springer International Publishing AG, part of Springer Nature; p. 289–302.
  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY. 2015. Role of nanoparticles in plants. In: Siddiqui M, Al-Waibi MH, Mohammad F, editors. Nanotechnology and plant science. Springer International Publishing Switzerland. p. 19–35.
  • Soliman AS, El-Feky SA, Darwish E. 2015. Alleviation of salt stress on Moringa peregrina using folaiar application of nanofertilizers. J Hortic For. 7(2):36–47.
  • Somogy M. 1952. Notes on sugar determination. J Biol Chem. 195:19–29.
  • Torabian S, Zahedi M, Khoshgoftar AH. 2016. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr. 39(2):172–180.
  • Tuncturk R. 2011. Salinity exposure modifies nutrient concentrations in fenugreek (Trigonella foenum-graecum L.). Afr J Agric Res. 6(16):3685–3690.
  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV. 2017. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem. 110:59–69.
  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, et al. 2017. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem. 110:118–127.
  • Wang JW, Zheng LP, Wu J, Tan RY. 2006. Involvement of nitric oxide in oxidative burst, phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide. 15(4):351–358.
  • Yoon S-J, Kwak J, Lee W-M, Holden PA, An Y-J. 2014. Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf. 100:131–137.
  • Zaghdoudi M, Msilini N, Govindachary S, Lachaal M, Ouer Z, Carpentier R. 2011. Inhibition of photosystems I and II activities in salt stress-exposed Fenugreek (Trigonella foenum graecum). J Photochem Photobiol B Biol. 105(1):14–20.
  • Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Stuckey D, Ng WJ, Tan SK. 2015. Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere. 120:211–219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.