511
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

A comparative study of phytotoxic effects of metal oxide (CuO, ZnO and NiO) nanoparticles on in-vitro grown Abelmoschus esculentus

, , , , &
Pages 374-383 | Received 23 Apr 2019, Accepted 24 Feb 2020, Published online: 04 May 2020

References

  • Ahmed B, Dwivedi S, Abdin MZ, Azam A, Al-Shaeri M, Khan MS, Saquib Q, Al-Khedhair AA, Musarrat J. 2017. Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Sci Rep. 7:40685.
  • Ahmed NU, Park JI, Jung HJ, Yang TJ, Hur Y, Nou IS. 2014. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene. 550(1):46–55.
  • Azeez L, Lateef A, Adebisi SA. 2017. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of. Appl Nanosci. 7(1-2):59–66.
  • Bao JS, Cai Y, Sun M, Wang G, Corke H. 2005. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J Agric Food Chem. 53(6):2327–2332.
  • Baskar V, Nayeem S, Kuppuraj SP, Muthu T, Ramalingam S. 2018b. Assessment of the effects of metal oxide nanoparticles on the growth, physiology and metabolic responses in in-vitro grown eggplant (Solanum melongena. 3 Biotech. 8(8):362. ).
  • Baskar V, Venkatesh J, Park SW. 2015. Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis. Environ Sci Pollut Res. 22(22):17672–17682.
  • Baskar V, Venkatesh R, Ramalingam S. 2018a. Flavonoids (antioxidants systems) in higher plants and their response to stresses. In Antioxidants and antioxidant enzymes in higher plants. Dordrecht, The Netherlands: Springer; p. 253–268.
  • Baxter A, Mittler R, Suzuki N. 2014. ROS as key players in plant stress signalling. J Exp Bot. 65(5):1229–1240.
  • Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 28(1):25–30.
  • Chalker-Scott L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol. 70(1):1–9. 10.
  • Da Costa MVJ, Sharma PK. 2016. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 54(1):110–119.
  • Ebbs S, Uchil S. 2008. Cadmium and zinc induced chlorosis in Indian mustard [Brassica juncea (L.) Czern] involves preferential loss of chlorophyll b. Photosynthetica. 46(1):49–55.
  • Faisal M, Saquib Q, Alatar AA, Al-Hedhairy AA, Ahmed M, Ansari SM, Alwathnani HA, Dwivedi S, Musarrat J, Praveen S. 2016. Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway. Biol Res. 49(1):20.
  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J. 2013. Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mat. 250-251:318–332.
  • Gokak IB, Taranath TC. 2015. Morphological and biochemical responses of Abelmoschus esculantus (L.) Moench to zinc nanoparticles. Adv Nat Sci: Nanosci Nanotechnol. 6(2):025017.
  • Gokila B, Keerthika V, Rajan MR. 2017. Impact of zinc oxide nanoparticles on growth, biochemical characteristics and yield of lady’s finger (Abelmoschus esculentus). Ind J App Res. 7(8):450–453.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Arch Biochem Biophy. 125(1):189–198.
  • Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdey JL. 2014. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol. 48(8):4376–4385.
  • Hossain Z, Mustafa G, Sakata K, Komatsu S. 2016. Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J Hazard Mat. 304:291–305.
  • Jiang HM, Yang JC, Zhang JF. 2007. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ Poll. 147(3):750–756.
  • Jiménez A, Selga A, Torres JL, Julià L. 2004. Reducing activity of polyphenols with stable radicals of the TTM series. Electron transfer versus H-abstraction reactions in flavan-3-ols. Org Lett. 6(24):4583–4586.
  • Khoubnasabjafari M, Ansarin K, Jouyban A. 2015. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bioimpacts. 5(3):123–127.
  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT. 2012. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem. 47(4):651–658.
  • Kumar DS, Tony DE, Kumar AP, Kumar KA, Dbs R, Nadendla R. 2013. A review on: Abelmoschus esculentus (okra). Int Res J Pharm App Sci. 3(4):129–132.
  • Kumari M, Sudheer Khan S, Pakrashi S, Mukherjee A, Chandrasekaran N. 2011. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater. 190(1-3):613–621.
  • Li W, Zheng Y, Zhang H, Liu Z, Su W, Chen S, Liu Y, Zhuang J, Lei B. 2016. Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS Appl Mater Interfaces. 8(31):19939–19945.
  • Lin TH, Huang YL, Huang SF. 1996. Lipid peroxidation in liver of rats administrated with methyl mercuric chloride. Biol Trace Elem Res. 54(1):33–41.
  • Lin D, Xing B. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol. 42(15):5580–5585.
  • Lu C, Zhang C, Wen J, Wu G, Tao M. 2001. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21(3):168–171.
  • Magaye R, Zhao J, Bowman L, Ding M. 2012. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp Therap Med. 4(4):551–561.
  • Nair PM, Chung IM. 2014a. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ Sci Pollut Res. 21(22):12709–12722.
  • Nair PM, Chung IM. 2014b. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignifications of root cells. Biol Trace Elem Res. 162(1-3):342–352.
  • Nair PM, Chung IM. 2015. Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignifications in Indian mustard (Brassica juncea L.). Ecotox Env Saf. 113:302–313.
  • Nair PMG, Kim SH, Chung IM. 2014. Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in-vitro grown plants. Acta Physiol Plant. 36(11):2947–2958.
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science. 311(5761):622–627.
  • Oberdürster G. 2000. Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc London Math Phys Eng Sci. 358(1775):2719–2740.
  • Oloumi H, Soltaninejad R, Baghizadeh A. 2015. The comparative effects of nano and bulk size particles of CuO and ZnO on glycyrrhizin and phenolic compounds contents in Glycyrrhiza glabra L. seedlings. Ind J Plant Physiol. 20(2):157–161.
  • Oukarroum A, Schansker G, Strasser RJ. 2009. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chla fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant. 137(2):188–199.
  • PéRez-Balibrea S, Moreno DA, Garcı´A-Viguera C. 2011. Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chem. 129(1):35–44.
  • Prakash MG, Chung IM. 2016. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings. Acta Biol Hung. 67(3):286–296.
  • Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 53(10):4290–4302.
  • Raigond P, Raigond B, Kaundal B, Singh B, Joshi A, Dutt S. 2017. Effect of zinc nanoparticles on antioxidative system of potato plants. JEB. 38(3):435–439.
  • Rao S, Shekhawat GS. 2014. Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Env Chem Eng. 2(1):105–114.
  • Rao S, Shekhawat GS. 2016. Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. 3 Biotech. 6:244. DOI: 10.1007/s13205-016-0550-3.
  • Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee W-Y, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL. 2013. Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem. 61(47):11278–11285.
  • Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H. 2015. Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep. 5:14278[PMC] [26419216]
  • Shaw AK, Hossain Z. 2013. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere. 93(6):906–915.
  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. 2006. Sucrose specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140(2):637–646.
  • Tanaka Y, Ohmiya A. 2008. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol. 19(2):190–197.
  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B. 2011. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotox. 5(1):30–42.
  • Yang J, Cao W, Rui Y. 2017. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Inter. 12(1):158–169.
  • Zafar H, Ali A, Ali JS, Haq IU, Zia M. 2016. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Front Plant Sci. 7:535[PMC][27148347]
  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL. 2014. CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem. 62(13):2752–2759.
  • Zhu H, Han J, Xiao JQ, Jin Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit. 10(6):713–717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.