130
Views
1
CrossRef citations to date
0
Altmetric
Articles

Growth prediction of Alternanthera philoxeroides under salt stress by application of artificial neural networking

, , , , , , & show all
Pages 61-67 | Received 29 Jul 2019, Accepted 30 Sep 2020, Published online: 19 Oct 2020

References

  • Abdipour M, Younessi-Hmazekhanlu M, Ramazani SHR. 2019. Artificial neural networks and multiple linear regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.). Indust Crops Prod. 127:185–194.
  • Amirjani M. 2010. Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am J Plant Physiol. 5(6):350–360.
  • Ashraf M, Foolad M. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 59(2):206–216.
  • Bombik A, Rymuza K, Markowska M, Stankiewicz C. 2007. Variability analysis of selected quantitative characteristics in edible potato varieties. Acta Sci Polon Agric. 6(3):5–15.
  • Bussay A, van der Velde M, Fumagalli D, Seguini L. 2015. Improving operational maize yield forecasting in Hungary. Agric Syst. 141:94–106.
  • Chen L, Yu Y, He X. 2008. Historical invasion and expansion process of Alternaria philoxeroides and its potential spread in China. Biodiversity Sci. 16(6):578–585.
  • Chen Z, Zou Y, Chen Y, Zhang Z, Xu X. 2010. Effects of fragmentation intensity of perennial roots and their burial depth on sprouting and early growth of Alternanthera philoxeroides (Mart.) Griseb. Agric Sci Technol Hunan. 11(6):103–111.
  • Croser C, Renault S, Franklin J, Zwiazek J. 2001. The effect of salinity on the emergence and seedling growth of Picea mariana, Picea glauca, and Pinus banksiana. Environ Pollut. 115(1):9–16.
  • Dawson K, Veblen KE, Young TP. 2007. Experimental evidence for an alkali ecotype of Lolium multiflorum, an exotic invasive annual grass in the Central Valley. Biol Invasions. 9(3):327–334.
  • Domínguez J, Kumhálová J, Novák P. 2015. Winter oilseed rape and winter wheat growth prediction using remote sensing methods. Plant Soil Environ. 61(9):410–416.
  • Dong B-C, Yu G-L, Guo W, Zhang M-X, Dong M, Yu F-H. 2010. How internode length, position and presence of leaves affect survival and growth of Alternanthera philoxeroides after fragmentation? Evol Ecol. 24(6):1447–1461.
  • Emamgholizadeh S, Parsaeian M, Baradaran M. 2015. Seed yield prediction of sesame using artificial neural network. Eur J Agron. 68:89–96.
  • Fu W-z, Chen Z-y, Huai H-y. 2006. The characteristics of clonal reproduction of rhizome from Alternanthera philoxeroides. Ecologic Sci. 25 (4):316–319.
  • Grahovac J, Jokić A, Dodić J, Vučurović D, Dodić S. 2016. Modelling and prediction of bioethanol production from intermediates and byproduct of sugar beet processing using neural networks. Renew Energy. 85:953–958.
  • Habib N, Ashraf M, Ali Q, Perveen R. 2012. Response of salt stressed okra (Abelmoschus esculentus Moench) plants to foliar-applied glycine betaine and glycine betaine containing sugarbeet extract. South Afr J Bot. 83:151–158.
  • Hediye Sekmen A, Türkan İ, Takio S. 2007. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant. 131(3):399–411.
  • Huang N, Li R, Lin L, Yu Z, Cai G. 2018. Low redundancy feature selection of short term solar irradiance prediction using conditional mutual information and Gauss process regression. Sustainability. 10(8):2889.
  • Javed Q, Sun J, Azeem A, Ullah I, Huang P, Kama R, Jabran K, Du D. 2019. The enhanced tolerance of invasive Alternanthera philoxeroides over native species under salt-stress in china. Appl Ecol Environ Res. 17(6):14767–14785.
  • Jia X, Yang X, Pan X, Li B, Chen J. 2008. Vegetative propagation characteristics of Alternanthera philoxeroides in response to disturbances. Biodiversity Sci. 16(3):229–235.
  • Kantanantha N, Serban N, Griffin P. 2010. Yield and price forecasting for stochastic crop decision planning. J Agric Biol Environ Stat. 15(3):362–380.
  • Keser LH, Visser EJ, Dawson W, Song Y-B, Yu F-H, Fischer M, Dong M, van Kleunen M. 2015. Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species. Front Plant Sci. 6:273.
  • Khairunniza-Bejo S, Mustaffha S, Ismail WIW. 2014. Application of artificial neural network in predicting crop yield: a review. J Food Sci Eng. 4(1):1.
  • Khoshnevisan B, Rafiee S, Iqbal J, Shamshirband S, Omid M, Badrul AN, Wa A. 2015. A comparative study between artificial neural networks and adaptive neuro-fuzzy inference systems for modeling energy consumption in greenhouse tomato production: a case study in Isfahan Province. J Agric Sci Technol. 17:49–62.
  • Kosma DK, Jenks MA. 2007. Eco-physiological and molecular-genetic determinants of plant cuticle function in drought and salt stress tolerance. In Jenks MA, Hasegawa PM, Jain SM, editors. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Dordrecht, The Netherlands: Springer; p. 91–120.
  • Li F, Qiao J, Han H, Yang C. 2016. A self-organizing cascade neural network with random weights for nonlinear system modeling. Appl Soft Comput. 42:184–193.
  • Liu C, Yu D. 2009. The bud and root sprouting capacity of Alternanthera philoxeroides after over-wintering on sediments of a drained canal. Hydrobiologia. 623(1):251–256.
  • Morais MC, Panuccio MR, Muscolo A, Freitas H. 2012. Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes. Plant Physiolo Biochem. 55:60–65.
  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K. 2010. Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol. 9(34):5475–5480.
  • Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H, Deryng D, Elliott J, Fujimori S, Hasegawa T, Heyhoe E, et al. 2014. Climate change effects on agriculture: economic responses to biophysical shocks. Proc Natl Acad Sci USA. 111(9):3274–3279.
  • Niazian M, Sadat-Noori SA, Abdipour M. 2018. Modeling the seed yield of Ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models. Ind Crops Prod. 117:224–234.
  • Niedbała G. 2019. Application of artificial neural networks for multi-criteria yield prediction of winter rapeseed. Sustainability. 11(2):533.
  • Niedbała G, Mioduszewska N, Mueller W, Boniecki P, Wojcieszak D, Koszela K, Kujawa S, Kozłowski RJ, Przybył K. 2016. Use of computer image analysis methods to evaluate the quality topping sugar beets with using artificial neural networks. Eighth International Conference on Digital Image Processing (ICDIP 2016); May 20–22; Chengu, China: International Society for Optics and Photonics.
  • Niedbala G, Przybył J, Sęk T. 2007. Prognose of the content of the sugar in roots of sugar-beet with utilization of the techniques regression and neural. Agric Eng. 2(90):225–234.
  • Ozaslan C, Farooq S, Onen H, Bukun B, Ozcan S, Gunal H. 2016. Invasion potential of two tropical physalis species in arid and semi-arid climates: effect of water-salinity stress and soil types on growth and fecundity. PLoS One. 11(10):e0164369.
  • Park S, Hwang C, Vlek P. 2005. Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agric Syst. 85(1):59–81.
  • Peng J, Kim M, Kim Y, Jo M, Kim B, Sung K, Lv S. 2017. Constructing Italian ryegrass yield prediction model based on climatic data by locations in South Korea. Grassl Sci. 63(3):184–195.
  • Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, et al. 2001. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ. 84(1):1–20.
  • Pintó-Marijuan M, Munné-Bosch S. 2013. Ecophysiology of invasive plants: osmotic adjustment and antioxidants. Trends Plant Sci. 18(12):660–666.
  • Rouifed S, Byczek C, Laffray D, Piola F. 2012. Invasive knotweeds are highly tolerant to salt stress. Environ Manage. 50(6):1027–1034.
  • Safa M, Samarasinghe S, Nejat M. 2015. Prediction of wheat production using artificial neural networks and investigating indirect factors affecting it: case study in Canterbury province, New Zealand. J Agr Sci Technol. 17:791–803.
  • StatSoft I. 2001. STATISTICA (data analysis software system), version 6. Tulsa (OK), p. 150.
  • Wang Q, Wang C, Zhao B, Ma Z, Luo Y, Chen J, Li B. 2006. Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biol Invasions. 8(7):1547–1560.
  • Wilson JR, Yeates A, Schooler S, Julien MH. 2007. Rapid response to shoot removal by the invasive wetland plant, alligator weed (Alternanthera philoxeroides). Environ Exp Bot. 60(1):20–25.
  • Yang C, Yang X, Zhang X, Zhou C, Zhang F, Wang X, Wang Q. 2019. Anatomical structures of alligator weed (Alternanthera philoxeroides) suggest it is well adapted to the aquatic–terrestrial transition zone. Flora. 253:27–34.
  • You W-H, Han C-M, Fang L-X, Du D-L. 2016. Propagule pressure, habitat conditions and clonal integration influence the establishment and growth of an invasive clonal plant, Alternanthera philoxeroides. Front Plant Sci. 7:568.
  • You W, Yu D, Xie D, Han C, Liu C. 2014. The invasive plant Alternanthera philoxeroides benefits from clonal integration in response to defoliation. Flora. 209(11):666–673.
  • Yu L, Yu D, Liu C, Xie D. 2010. Flooding effects on rapid responses of the invasive plant Alternanthera philoxeroides to defoliation. Flora. 205(7):449–453.
  • Zhang G, Patuwo BE, Hu MY. 1998. Forecasting with artificial neural networks: the state of the art. Int J Forecast. 14(1):35–62.
  • Zhu J-K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124(3):941–948.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.