164
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Dittrichia viscosa performance in substrates with moderately low levels of As and Cd contamination

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 983-989 | Received 09 Jan 2020, Accepted 06 Oct 2020, Published online: 02 Nov 2020

References

  • Ali W, Isayenkov SV, Zhao F-J, Maathuis FJM. 2009. Arsenite transport in plants. Cell Mol Life Sci. 66(14):2329–2339.
  • Barbafieri M, Dadea C, Tassi E, Bretzel F, Fanfani L. 2011. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation. Int J Phytoremediation. 13(10):985–997.
  • Barozzi F, Papadia P, Stefano G, Renna L, Brandizzi F, Migoni D, Fanizzi FP, Piro G, Di Sansebastiano GP. 2019. Variation in membrane trafficking linked to SNARE AtSYP51 interaction with aquaporin NIP1. Front Plant Sci. 9:1949.
  • Bissen M, Frimmel FH. 2000. Speciation of As(III), As(V), MMA and DMA in contaminated soil extracts by HPLC-ICP/MS. Fresenius J Anal Chem. 367(1):51–55.
  • Buscaroli A, Zannoni D, Menichetti M, Dinelli E. 2017. Assessment of metal accumulation capacity of Dittrichia viscosa (L.) Greuter in two different Italian mine areas for contaminated soils remediation. J. Geochemical Explor. 182:123–131.
  • Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma LQ. 2017. Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol. 51(21):12131–12138.
  • Fernández R, Bertrand A, Reis R, Mourato MP, Martins LL, González A. 2013. Growth and physiological responses to cadmium stress of two populations of Dittrichia Viscosa (L.) Greuter. J Hazard Mater. 244–245:555–562.
  • da Silva EB, Lessl JT, Wilkie AC, Liu X, Liu Y, Ma LQ. 2018. Arsenic removal by As-hyperaccumulator Pteris vittata from two contaminated soils: a 5-year study. Chemosphere. 206:736–741.
  • Finnegan P, Chen W. 2012. Arsenic toxicity: the effects on plant metabolism. Front Physiol. 3(3):182.
  • Guarino F, Conte B, Improta G, Sciarrillo R, Castiglione S, Cicatelli A, Guarino C. 2018. Genetic characterization, micropropagation, and potential use for arsenic phytoremediation of Dittrichia viscosa (L.) Greuter. Ecotoxicol Environ Saf. 148:675–683.
  • Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biom J. 50(3):346–363.
  • Hu W, Wang H, Dong L, Huang B, Borggaard OK, Bruun Hansen HC, He Y, Holm PE. 2018. Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach. Environ Pollut. 237:650–661.
  • IARC. 2012. Arsenic, metals, fibres, and dusts: a review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 100(Pt C):11–465.
  • Jiménez MN, Bacchetta G, Casti M, Navarro FB, Lallena AM, Fernández-Ondoño E. 2011. Potential use in phytoremediation of three plant species growing on contaminated mine-tailing soils in Sardinia. Ecol Eng. 37(2):392–398.
  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. 182:247–268.
  • Kim YN, Kim JS, Seo SG, Lee Y, Baek SW, Kim IS, Yoon HS, Kim KR, Kim SH, Kim KH. 2011. Cadmium resistance in tobacco plants expressing the MuSI gene. Plant Biotechnol Rep. 5(4):323–329.
  • López-Orenes A, Bueso MC, Párraga-Aguado IM, Calderón AA, Ferrer MA. 2018. Coordinated role of soluble and cell wall bound phenols is a key feature of the metabolic adjustment in a mining woody fleabane (Dittrichia viscosa L.) population under semi-arid conditions. Sci Total Environ. 618:1139–1151.
  • Lv J. 2019. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environ Pollut. 244:72–83.
  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA. 105(29):9931–9935.
  • Marmiroli M, Mussi F, Imperiale D, Lencioni G, Marmiroli N. 2017. Abiotic stress response to As and As + Si, composite reprogramming of fruit metabolites in tomato cultivars. Front Plant Sci. 8(8):2201.
  • Panda SK, Upadhyay RK, Nath S. 2010. Arsenic stress in plants. J Agron Crop Sci. 196(3):161–174.
  • Pandey J, Kumar Verma R, Singh S. 2019. Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review. Int J Phytoremediation. 21(5):405–418.
  • Parolin P, Ion-Scotta M, Bresch CG. 2014. Biology of Dittrichia viscosa, a Mediterranean ruderal plant: a review. Phyton. 83(1):251–262. http://ppct.caicyt.gov.ar/index.php/phyton/article/view/8728.
  • Pérez-Sirvent C, Martínez-Sánchez MJ, Martínez-López S, Bech J, Bolan N. 2012. Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain. J Geochemical Explor. 123:128–135.
  • R Core Team. 2019. R: a language and environment for statistical computing. https://www.r-project.org/.
  • Pistelli L, D'Angiolillo F, Morelli E, Basso B, Rosellini I, Posarelli M, Barbafieri M. 2017. Response of spontaneous plants from an ex-mining site of Elba island (Tuscany, Italy) to metal(loid) contamination. Environ Sci Pollut Res Int. 24(8):7809–7820.
  • Sanglard LM, Martins SC, Detmann KC, Silva PE, Lavinsky AO, Silva MM, Detmann E, Araújo WL, DaMatta FM. 2014. Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiol Plant. 152(2):355–366.
  • Shah K, Pathak L. 2019. Chapter 15 - Transgenic energy plants for phytoremediation of toxic metals and metalloids. In: Majeti Narasimha Vara Prasad, editor. Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids. Academic Press; p. 319–340.doi: 10.1016/B978-0-12-814389-6.00015-8.
  • Sharma I. 2012. Arsenic induced oxidative stress in plants. Biologia. 67(3):447.
  • Shi T, Ma J, Wu F, Ju T, Gong Y, Zhang Y, Wu X, Hou H, Zhao L, Shi H. 2019. Mass balance-based inventory of heavy metals inputs to and outputs from agricultural soils in Zhejiang Province, China. Sci Total Environ. 649:1269–1280.
  • Suman J, Uhlik O, Viktorova J, Macek T. 2018. Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci. 9:1476.
  • Tlustoš P, Száková J, Pavlíková D, Balík J. 2006. The response of tomato (Lycopersicon esculentum) to different concentrations of inorganic and organic compounds of arsenic. Biologia. 61(1):91.
  • Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S, Chakrabarty D, Trivedi PK. 2012. Arsenomics: omics of arsenic metabolism in plants. Front Physiol. 3:275.
  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G. 2006. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere. 65(1):74–81.
  • Xu XY, McGrath SP, Zhao FJ. 2007. Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol. 176(3):590–599.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.