434
Views
2
CrossRef citations to date
0
Altmetric
Articles

An integrated geochemical and mineralogical investigation on soil-plant system of Pinus halepensis pioneer tree growing on heavy metal polluted mine tailing

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 272-285 | Received 02 Mar 2022, Accepted 07 Jul 2022, Published online: 08 Aug 2022

References

  • Aversa G, Balassone G, Boni M, Amalfitano C. 2002. The mineralogy of the «calamine» Ores in SW Sardinia (Italy): preliminary results. Periodico Mineralogy. 71:201–218.
  • Bacchetta G, Cao A, Cappai G, Carucci A, Casti M, Fercia ML, Lonis R, Mola F. 2012. A field experiment on the use of Pistacia lentiscus L. and Scrophularia canina L. subsp. bicolor (Sibth. & Sm.) Greuter for the phytoremediation of abandoned mining areas. Plant Biosyst. 146(4):1054–1063.
  • Bacchetta G, Cappai G, Carucci A, Tamburini E. 2015. Use of native plants for the remediation of abandoned mine sites in Mediterranean semiarid environments. Bull Environ Contam Toxicol. 94(3):326–333.
  • Bacchetta G, Bagella S, Biondi E, Farris E, Filigheddu R, Mossa L. 2009. Vegetazione forestale e serie divegetazione della Sardegna (con rappresentazione cartografica alla scala 1:350.000). Fitosociologia. 46:3–82.
  • Bacchetta G, Boi ME, Cappai G, De Giudici G, Piredda M, Porceddu M. 2018. Metal tolerance capability of Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso: a candidate for phytostabilization in abandoned mine sites. Bull Environ Contam Toxicol. 101(6):758–765.
  • Barbafieri M, Dadea C, Tassi E, Bretzel F, Fanfani L. 2011. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation. Int J Phytoremediation. 13(10):985–997.
  • Barbafieri M, Lubrano L, Petruzzelli G. 1996. Characterization of pollution in sites contaminated by heavy metals: a proposal. Ann Chim. 86:585–594.
  • Bechstädt T, Boni M. 1994. Sedimentological, Stratigraphical and Ore Deposits Field Guide of the Autochthonous CambroOrdovician of Southwestern Sardinia: Servizio Geologico d’Italia Memorie Descritive Carta Geologica d’Italia, Istituto Superiore per la Protezione e la Ricerca Ambientale. Roma, Italy, 48: 434.
  • Boi MN, Medas D, Aquilanti G, Bacchetta G, Birarda G, Cappai G, Carlomagno I, Casu MA, Gianoncelli A, Meneghini C, et al. 2020a. Mineralogy and Zn chemical speciation in a soil-plant system from a metal-extreme environment: A study on Helichrysum microphyllum subsp. tyrrhenicum (Campo Pisano Mine, SW Sardinia, Italy). Minerals. 10(3):259.
  • Boi MN, Porceddu M, Cappai G, De Giudici G, Bacchetta G. 2020b. Effects of zinc and lead on seed germination of Helichrysum microphyllum subsp. tyrrhenicum, a metal-tolerant plant. Int J Environ Sci Technol. 17(4):1917–1928.
  • Boni M, Costabile S, De Vivo B, Gasparrini M. 1999. Potential environmental hazard in the mining district of southern Iglesiente (SW Sardinia, Italy). J Geochem Explor. 67(1–3):417–430.
  • Boni M, Mondillo N, Balassone G, Joachimski M, Colella A. 2013. Zincian dolomite related to supergene alteration in the Iglesias mining district (SW Sardinia). Int J Earth Sci (Geol Rundsch). 102(1):61–71.
  • Brunetti G, Soler-Rovira P, Farrag K, Senesi N. 2009. Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil. 318(1–2):285–298.
  • Caldelas C, Weiss DJ, Cao A, Cappai G, Carucci A, Muntoni A. 2017. Zinc homeostasis and isotopic fractionation in plants: a review. Plant Soil. 411(1–2):17–46.
  • Cao A, Cappai G, Carucci A, Lai T. 2008. Heavy metal bioavailability and chelate mobilization efficiency in an assisted phytoextraction process. Environ Geochem Health. 30(2):115–119.
  • Cao A, Carucci A, Lai T, Bacchetta G, Casti M. 2009. Use of native species and biodegradable chelating agent in phytoremediation of the abandoned mining area. J Chem Technol Biotechnol. 84(6):884–889.
  • Chiarantini L, Rimondi V, Benvenuti M, Beutel MW, Costagliola P, Gonnelli C, Lattanzi P, Paolieri M. 2016. Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci Total Environ. 569-570:105–113.
  • Cicek A, Koparal AS. 2004. Accumulation of sulphur and heavy metals in soil and tree leaves sampled from the surroundings of Tunc, bilek thermal power plant. Chemosphere. 57(8):1031–1036.
  • Cidu R, Biagini C, Fanfani L, La Ruffa G, Marras I. 2001. Mine closure at Monteponi (Italy): effect of the cessation of dewatering on the quality of shallow groundwater. Appl Geochem. 16(5):489–502.
  • Cidu R, Biddau R, Fanfani L. 2009. Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). J. Geochemical Exploration. 100(2–3):125–132.
  • Concas A, Ardau C, Cristini A, Zuddas P, Cao G. 2006. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. Chemosphere. 63(2):244–253.
  • Concas A, Lattanzi P, Bacchetta G, Barbafieri M, Vacca A. 2015. Zn, Pb and Hg contents of Pistacia lentiscus L. grown on heavy metal-rich soils: implications for phytostabilization. Water Air Soil Pollut. 226(10):340.
  • Conesa HM, Pàrraga-Aguado I. 2021. Effects of a soil organic amendment on the metal allocation of trees for the phytomanagement of mining-impacted soils. Environ Geochem Health. 43(4):1355–1366.
  • De Giudici G, Medas D, Meneghini C, Casu M, A, Gianoncelli A, Iadecola A, Podda S, Lattanzi P. 2015. Microscopic biomineralization processes and Zn bioavailability: a synchrotron-based investigation of Pistacia lentiscus L. roots. Environ Sci Pollut Res Int. 22(24):19352–19361.
  • Disante KB, Fuentes D, Cortina J. 2010. Sensitivity to zinc of Mediterranean woody species is important for restoration. Sci Total Environ. 408(10):2216–2225.
  • Domínguez MT, Madrid F, Marañón T, Murillo JM. 2009. Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Chemosphere. 76(4):480–486.
  • Evangelou MWH, Conesa HM, Robinson BH, Schulin R. 2012. Biomass production on trace element-contaminated land: a review. Environ Eng Sci. 29(9):823–839.
  • Fellet G, Marchiol L, Perosa D, Zerbi G. 2007. The application of phytoremediation technology in soil contaminated by pyrite cinders. Ecol Eng. 31(3):207–214.,
  • Feng MH, Shan XQ, Zhang S, Wen B. 2005. Comparison of the rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere. 59(7):939–949.
  • Franceschi VR, Nakata PA. 2005. Calcium oxalate in plants: formation and function. Annu Rev Plant Biol. 56:41–71.
  • Gray N. 1997. Environmental impact and remediation of acid mine drainage: a management problem. Environ Geol. 30(1–2):62–71.
  • Guan T, He HB, Zhang XD, Bai Z. 2011. Cu fractions, mobility, and bioavailability in the soil-wheat system after Cu-enriched livestock manure applications. Chemosphere. 82(2):215–222. 2011
  • Guri. 2006., Nome in Materie Ambientale, Norme in Materia Ambientale, Decreto Legislativo 3 Aprile, n. 152., Supplemento Ordinario n.96, Roma, Italy: Gazzetta Ufficiale. (In Italian)
  • Hodson MJ, Evans DE. 1995. Aluminium/silicon interactions in higher plants. J Exp Bot. 46(2):161–171.
  • Jerz JK, Rimstidt JD. 2003. Efflorescent iron sulfate minerals: paragenesis, relative stability, and environmental impact. Am Mineral. 88(11–12):1919–1932.
  • Kabata-Pendias A, Pendias H. 1992. Trace elements in soils and plants. 2nd Ed. Boca Raton: CRC Press.
  • Kopittke P, Gianoncelli A, Kourousias G, Green K, McKenna BA. 2017. Alleviation of Al toxicity by Si is associated with the formation of Al-Si complexes in root tissues of Sorghum. Front Plant Sci. 8:2189.
  • Lai T, Cappai G, Carucci A, Bacchetta C. 2015. Phytoremediation of abandoned mining areas using native plant species: a Sardinian case study. Environ Sci Technol. 11:255–277.
  • Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 42(3):421–428.
  • Marchiol L, Fellet G, Boscutti F, Montella C, Mozzi R, Guarino C. 2013. Gentle remediation at the former “Pertusola Sud” zinc smelter: evaluation of native species for phytoremediation purposes. Ecol Eng. 53:343–353.
  • Medas D, De Giudici G, Casu MA, Musu E, Gianoncelli A, Iadecola A, Meneghini C, Tamburini E, Sprocati AR, Turnau K, et al. 2015. Microscopic processes ruling the bioavailability of Zn to roots of Euphorbia pithyusa L. pioneer plant. Environ Sci Technol. 49(3):1400–−1408.,
  • Medas D, De Giudici G, Pusceddu C, Casu MA, Birarda G, Vaccari L, Gianoncelli A, Meneghini C. 2019. Impact of Zn excess on biomineralization processes in Juncus acutus grown in mine polluted sites. J Hazard Mater. 370:98–107.
  • Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect. 116(3):278–283.
  • Moore J. 1972. Supergene mineral deposits and physiographic development in southwest Sardinia, Italy. T I Mineralogy Metall, B. 71:B59–B66.
  • Nabais C, Freitas H, Hagemeyer J. 1999. Dendroanalysis: a tool for biomonitoring environmental pollution? Sci Total Environ. 232(1–2):33–37.
  • Pàrraga-Aguado I, Querejeta JI, González-Alcaraz MN, Jiménez-Cárceles FJ, Conesa HM. 2014a. Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs. shrubs vs. trees. J Environ Manage. 133:51–58.
  • Pàrraga-Aguado I, Querejeta JI, González-Alcaraz MN, Conesa HM. 2014b. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings. Sci Total Environ. 485–486:406–414.
  • Pàrraga-Aguado I, Querejeta JI, González-Alcaraz MN, Jiménez-Cárceles FJ, Conesa HM. 2014c. Elemental and stable isotope composition of Pinus halepensis foliage along a metal(loid) polluted gradient: implications for phytomanagement of mine tailings in semiarid areas. Plant Soil. 379(1–2):93–107.
  • Párraga-Aguado M, Álvarez-Rogel I, González-Alcaraz J, Jiménez-Cárceles MN, Conesa FJ. 2013. Assessment of metal(loid)s availability and their uptake by Pinus halepensis in a Mediterranean forest impacted by abandoned tailings. Ecol Eng. 58:84–90.
  • Pérez-Piqueres A, Moreno R, López-Martínez M, Albiach R, Ribó M, Canet-Castelló R. 2018. Composts and organic by-products in Pinus halepensis forestry. Front Sustain Food Syst. 2. Article :56.
  • Pulford ID, Watson C. 2003. Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int. 29(4):529–540.
  • Querejeta JI, Barberá GG, Granados A, Castillo VM. 2008. Afforestation method affects the isotopic composition of planted Pinus halepensis in a semiarid region of Spain. For Ecol Manag. 254(1):56–64.
  • Rathore SS, Shekhawat L, Dass A, Kandpal BK, Singh VK. 2019. Phytoremediation mechanism in Indian mustard (Brassica juncea) and its enhancement through agronomic interventions. Proc Natl Acad Sci, India, Sect B Biol Sci. 89(2):419–427.
  • Renault S, Lait C, Zwiazek JJ, MacKinnon M. 1998. Effect of high salinity tailings waters produced from gypsum treatment of oil sands tailings on plants of the boreal forest. Environ Pollut. 102(2–3):177–184.
  • Robitaille G. 1981. Heavy-metal accumulation in the annual rings of balsam fir Abies balsamea (L.) Mill. Environ Pollut. B, Chimerical and Physical. 2(3):193–202.
  • Rodríguez Martin J, Gutierrez C, Torrijos M, Nanos N. 2018. Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean region. Environ Pollut. 239:438–447.
  • Sardans J, Peñuelas J, Rodá F. 2005. Changes in nutrient use efficiency, status, and re-translocation in young post-fire regeneration Pinus halepensis in response to sudden N and P input, irrigation, and removal of competing vegetation. Trees. 19(3):233–250.
  • Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K. 2011. Trees as bio-indicator of heavy metal pollution in three European cities. Environ Pollut. 159(12):3560–3570.
  • Sheppard JC, Funk WH. 1975. Trees as environmental sensors monitoring long-term heavy metal contamination of Spokane River, Idaho. Environ Sci Technol. 9(7):638–642.
  • Sun FF, Wen DZ, Kuang YW, Li J, Zhang JG. 2009. Concentrations of sulphur and heavy metals in needles and rooting soils of Masson pine (Pinus massoniana L.) trees growing along an urban-rural gradient in Guangzhou. Environ Monit Assess. 154(1–4):263–274.
  • USDA. 1998. Soil quality indicators: pH., 1998. [cited 2021 July 10] Available from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052208.pdf.,
  • Watmough SA, Hutchinson TC. 2003. A comparison of temporal patterns in trace metal concentration in tree rings of four common European tree species adjacent to a Cu-Cd refinery. Water Air Soil Pollut. 146(1/4):225–241.
  • Witte KM, Wanty RB, Ridley WI. 2004. Engelmann spruce (Picea engelmannii) as a biological monitor of changes in soil metal loading related to past mining activity. Appl Geochem. 19(9):1367–1376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.