193
Views
0
CrossRef citations to date
0
Altmetric
Articles

Antifungal and antiparasitic activity of Wunderlichia azulensis (Asteraceae) roots

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 658-669 | Received 12 Aug 2022, Accepted 22 Feb 2023, Published online: 10 Mar 2023

References

  • Alcerito T, Barbo FE, Negri G, Santos DYAC, Meda CI, Young MCC, Chávez D, Blatt CTT. 2002. Folicular epicuticular wax of Arrabidaea brachypoda: flavonoids and antifungal activity. Biochem Syst Ecol. 30(7):677–683.
  • Alexandrino CR, Carvalho LP, Melo EJT, Mello EO, Gomes VM, Callado CHD, Cunha M. 2016. Bioactivity of leaf extracts from species of Palicourea (Rubiaceae) on Trypanosoma cruzi, Candida sp. and Fusarium solani. Eur. J. Biomed. Pharm. Sci. 3:489–496.
  • Alexopoulos CJ, Mins CWE, Blackwell M. 1996. Introductory mycology. 4th ed. New York (NY): John Wiley & Sons Inc.
  • Ali H, König GM, Khalid SA, Wright AD, Kaminsky R. 2002. Evaluation of selected Sudanese medicinal plants for their in vitro activity against hemoflagellates, selected bacteria, HIV-1-RT and tyrosine kinase inhibitory, and for cytotoxicity. J Ethnopharmacol. 83(3):219–228.
  • Barroso GM, Maguire M. 1973. A review of the genus Wunderlichia (Mutisiae, Compositae). Rev Bras Biol. 33:379–406.
  • Becker JVW, van der Merwe MM, van Brummelen AC, Pillay P, Crampton BG, Mmutlane EM, Parkinson C, van Heerden FR, Crouch NR, Smith PJ, et al. 2011. In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae): identification of its main active constituent, structure-activity relationship studies and gene expression profiling. Malaria J. 10:295.
  • Bohlmann F, Ludwig GW, Jakupovic J, King RM, Robinson H. 1984. New spirosesquiterpenelactones, germacranolides, and eudesmanolides from Wunderlichia mirabilis. Liebigs Ann Chem. 1984(2):228–239.
  • Bohlmann F, Zdero C, Robinson H, King RM. 1981. Naturally-occurring terpene derivatives 337. Modified eudesmanolides and other sesquiterpene lactones from Wunderlichia mirabilis and Actinoseris polymorpha. Phytochemistry. 20(7):1631–1634.
  • Bremer K. 1994. Asteraceae- cladistic & classification. Portland (OR): Timber Press.
  • Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J. 1990. An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett. 69(1-2):55–59.
  • Cabrera AL. 1977. Mutisieae-Systematic review. In: Heywood VH, Harborne JB, Turner BL, editors. The biology and chemistry of the compositae. Vol. 2. London (UK): Academic Press; p. 1039–1066.
  • Cala A, Molinillo JMG, Fernández-Aparicio M, Ayuso J, Álvarez JA, Rubiales D, Macías FA. 2017. Complexation of sesquiterpene lactones with cyclodextrins: synthesis and effects on their activities on parasitic weeds. Org Biomol Chem. 15(31):6500–6510.
  • Carvalho LP, Gomes MAGB, Rocha BS, Oliveira RR, Maria E, Edmilson J, Melo EJT. 2014. Anti-parasite effects of new thiosemicarbazones and their products thiazolidinone including cellular aspects of intracellular elimination of Trypanosoma Cruzi in vitro. J Dev Drugs. 3:1–7.
  • Chandrasekaran M, Venkatesalu V. 2004. Antibacterial and antifungal activity of Syzygium jambolonum seeds. J Ethnopharmacol. 91(1):105–108.
  • Chaturvedula VSP, Prakash I. 2012. Isolation of stigmasterol and β- sitosterol from the dichloromethane extract of Rubus suavissimus. Int Curr Pharm J. 1(9):239–242.
  • Elso OG, Bivona AE, Alberti AS, Cerny N, Fabian L, Morales C, Catalán CAN, Malchiodi EL, Cazorla SI, Sülsen VP. 2020. Trypanocidal activity of four sesquiterpene lactones isolated from Asteraceae species. Molecules. 25(9):2014.
  • Feres F, Zucchi MI, De Souza AP, Amaral M, Bittrich V. 2009. Phylogeographic studies of Brazilian" campo-rupestre" species: Wunderlichia mirabilis Riedel ex Baker (Asteraceae). Biotemas. 22(1):17–26.
  • Gevú KV, Lima HRP, Neves IA, Mello EO, Taveira GB, Carvalho LP, Carvalho MG, Gomes VM, Melo EJT, Da Cunha M. 2019. Chemical composition and anti-Candida and anti-Trypanosoma cruzi activities of essential oils from the rhizomes and leaves of brazilian species of Renealmia L. fil. Rec Nat Prod. 13(3):268–280.
  • Grael CFF, Vichnewski W, Souza GEP, Lopes JLC, Albuquerque S, Cunha WR. 2000. A study of the trypanocidal and analgesic properties from Lychnophora granmongolense (Duarte) Semir and Leitão Filho. Phytother Res. 14(3):203–206.
  • Grusak MA. 2000. Strategies for improving the iron nutritional quality of seed crops: lessons learned from the study of unique iron-hyperaccumulating pea mutants. Pisum Genetics. 32:1–5.
  • Higuchi Y, Shimoma F, Koyanagi R, Suda K, Mitsui T, Kataoka T, Nagai K, Ando M. 2003. Synthetic approach to exo-endo cross-conjugated cyclohexadienones and its application to the syntheses of dehydrobrachylaenolide, isodehydrochamaecynone, and trans isodehydrochamaecynone. J Nat Prod. 66(5):588–594.
  • Hind DJN, Semir J. 1998. Typification of Wunderlichia (Compositae-Mutiseae). Kew Bull. 53(4):1011–1012.
  • Höfling JF, Anibal PC, Obando-Pereda GA, Peixoto IA, Furletti VF, Foglio MA, Gonçalves RB. 2010. Antimicrobial potential of some plant extracts against Candida species. Braz J Biol. 70(4):1065–1068.
  • Hussain H, Badawy A, Elshazly A, Elsayed A, Krohn K, Riaz M, Schulz B. 2011. Chemical constituents and antimicrobial activity of Salix subserrata. Rec Nat Prod. 5(2):133.
  • Klopell FC, Lemos M, Sousa JPB, Comunello E, Maistro EL, Bastos JK, De Andrade SF. 2007. Nerolidol, an antiulcer constituent from the essential oil of Baccharis dracunculifolia DC (Asteraceae). Z Naturforsch C J Biosci. 62(7-8):537–542.
  • Lae KZW, Su SS, Win NN, Than NN, Ngwe H. 2019. Isolation of lasiodiplodin and evaluation of some biological activities of the stem barks of Phyllanthus albizzioides (Kurz) Hook.f. Sci Med J. 1(4):199–216.
  • Leite MCA, de Brito Bezerra AP, de Sousa JP, de Oliveira Lima E. 2015. Investigating the antifungal activity and mechanism(s) of geraniol against Candida albicans strains. Med Mycol. 53(3):275–284.
  • Lima HRP, Kaplan MAC, Cruz AVM. 2003. Influência dos fatores abióticos na produção e variabilidade de terpenoides em plantas [Influence of abiotic factors in production and variety of terpenoids in plants]. Floresta Ambiente. 10(2):71–77.
  • Macias FA, Galindo JCG, Massanet GM. 1992. Potential allelopathic activity of several sesquiterpene lactone models. Phytochemistry. 31(6):1969–1977.
  • Mahato SB, Kundu AP. 1994. 13C NMR spectra of pentacyclic triterpenoids—a compilation and some salient features. Phytochemistry. 37(6):1517–1575.
  • Martínez G, Regente M, Jacobi S, Del Rio M, Pinedo M, de la Canal L. 2017. Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic Biochem Physiol. 140:30–35.
  • Mello EO, Ribeiro SFF, Carvalho AO, Santos IS, Da Cunha M, Santa-Catarina C, Gomes VM. 2011. Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr Microbiol. 62(4):1209–1217.
  • Milutinovic VM, Matic IZ, Stanojkovic TP, Sokovic MD, Ciric AD, Usjak LJ, Niketic MS, Petrovic SD. 2022. Antimicrobial and cytotoxic activities of selected Hieracium L. s. str. (Asteraceae) extracts and isolated sesquiterpene lactones. Chem Biodiver. 19:e202200326.
  • Nuñez CV, Zacheu FM, Pinto E, Roque NF, Colepicolo P, Brigagão MRPL. 2003. Sesquiterpene lactone from Wunderlichia crulsiana inhibits the respiratory burst of leukocytes triggered by distinct biochemical pathways. Life Sci. 73(17):2161–2169.
  • Panero JL, Funk VA. 2007. New infrafamilial taxa in Asteraceae. Phytologia. 89(3):356–360.
  • Panero JL, Funk VA. 2008. The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol Phylogenet Evol. 47(2):757–782.
  • Perveen S, Alqahtani J, Orfali R, Aati HY, Al-Taweel AM, Ibrahim TA, Khan A, Yusufoglu HS, Abdel-Kader MS, Taglialatela-Scafati O. 2020. Antibacterial and antifungal sesquiterpenoids from aerial parts of Anvillea garcinii. Molecules. 25(7):1730.
  • Rademeyer M, van Heerden FR, van der Merwe MM. 2008. Dehydro brachylaenolide: an eudesmane-type sesquiterpene lactone. Acta Crystallogr Sect E Struct Rep Online. 65(Pt 1):o196.
  • Rajput SB, Karuppayil SM. 2013. Small molecules inhibit growth, viability and ergosterol biosynthesis in Candida albicans. Springer Plus. 2:26.
  • Rao A, Zhang Y, Muend S, Rao R. 2010. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother. 54(12):5062–5069.
  • Rassi AJR, Rassi A, Marcondes De Rezende J. 2012. American trypanosomiasis (Chagas disease). Infect Dis Clin North Am. 26(2):275–291.
  • Rial C, Varela RM, Molinillo JM, Bautista E, Hernández AO, Macías FA. 2016. Phytotoxicity evaluation of sesquiterpene lactones and diterpenes from species of the Decachaeta, Salvia and Podachaenium genera. Phytochem Lett. 18:68–76.
  • Rodriguez E, Towers GHN, Mitchell JC. 1976. Biological activities of sesquiterpene lactones. Phytochemistry. 15(11):1573–1580.
  • Sánchez-Maldonado AF, Schieber A, Gänzle MG. 2016. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): glycoalkaloids and phenolic acids show synergistic effects. J Appl Microbiol. 120(4):955–965.
  • Santos TG, Rebelo RA, Dalmarco EM, Guedes A, De Gasper AL, Cruz AB, Schmit AP, Cruz RCB, Steindel M, Semenya SS. 2012. Medicinal plants used by the Bapedi traditional healers to treat diarrhoea in the Limpopo Province, South Africa. J Ethnopharmacol. 144(2):395–401.
  • Scavo A, Rial C, Molinillo JMG, Varela RM, Mauromicale G, Macı As FA. 2020. Effect of shading on the sesquiterpene lactone content and phytotoxicity of cultivated cardoon leaf extracts. J Agric Food Chem. 68(43):11946–11953.
  • Shale TL, Stirk WA, Van. Staden J. 1999. Screening of medicinal plants used in lesotho for anti-bacterial and anti-inflammatory activity. J Ethnopharmacol. 67(3):347–354.
  • Soković M, Marin PD, Brkić D, Griensven LJLD. 2007. Chemical composition and antibacterial activity of essential oils of ten aromatic plants against human pathogenic bacteria. Glob Sci Books. 1:220–226.
  • Sosa A, Capusiri ES, Amaya S, Bardón A, Giménez-Turba A, Vera N, Borkosky S. 2021. Trypanocidal activity of South American Vernonieae (Asteraceae) extracts and its sesquiterpene lactones. Nat Prod Res. 35(23):5224–5228.
  • Sousa LM, Gois RWS, Lemos TLG, Arriaga AMC, Andrade-Neto M, Santiago GMP, Braz-Filho R, Costa JGM, Rodrigues FFG. 2013. Chemical constituents and evaluation of antibacterial activity of Macroptilium lathyroides (L.) Urb. (Fabaceae). Quím Nova. 36(9):1370–1374.
  • Steenkamp V, Mathivha E, Gouws MC, van Rensburg CEJ. 2004. Studies on antibacterial, antioxidant and fibroblast growth stimulation of wound healing remedies from South Africa. J Ethnopharmacol. 95(2–3):353–357.
  • Thevissen K, Terras FR, Broekaert WF. 1999. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol. 65(12):5451–5458.
  • Torrent M, Pulido D, Rivas L, Andreu D. 2012. Antimicrobial peptide action on parasites. Curr Drug Targets. 13(9):1138–1147.
  • Toyang NJ, Ateh EN, Keiser J, Vargas M, Bach H, Tane P, Sondengam LB, Davis H, Bryant J, Verpoorte R. 2012. Toxicity, antimicrobial and anthelmintic activities of Vernonia guineensis Benth. (Asteraceae) crude extracts. J Ethnopharmacol. 144(3):700–704.
  • Tran TN, Sichaem J, Nguyen VK, Chavasiri W, Niamnont N, Jongaramruong J, Duong TH. 2021. A new ent-atisane diterpenoid from the aerial parts of Euphorbia antiquorum L. Nat. Prod. Res. 35(2):312–317.
  • Turner WB, Aldridge DC, Galt S, Giles D. 1971. Metabolites of Lasiodiplodia theobromae. J Chem Soc, C. 9:1623–1627.
  • Ueno VA, Sawaya ACHF. 2019. Influence of environmental factors on the volatile composition of two Brazilian medicinal plants: Mikania laevigata and Mikania glomerata. Metabolomics. 15(6):91.
  • Ulloa JL, Spina R, Casasco A, Petray PB, Martino V, Sosa MA, Frank FM, Muschietti FV. 2017. Germacranolide-type sesquiterpene lactones from Smallanthus sonchifolius with promising activity against Leishmania mexicana and Trypanosoma cruzi. Parasit Vectors. 10(1):567.
  • Wu M, Liu S, Huang D, He L, Guo M, Ni L, Zou S. 2021. Chemical constituents from the leaves of Cinnamomum camphora var. linaloolifera and their anti-inflammatory activities. Zhongguo Zhongyao Zazhi. 46(14):144–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.