225
Views
0
CrossRef citations to date
0
Altmetric
Articles

Co-inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria can mitigate the effects of drought in wheat plants (Triticum durum)

ORCID Icon, , , & ORCID Icon
Pages 907-919 | Received 08 Nov 2022, Accepted 16 Jun 2023, Published online: 06 Jul 2023

References

  • Abd El-Mageed TA, El-Samnoudi IM, Ibrahim AEAM, Abd El Tawwab AR. 2018. Compost and mulching modulates morphological, physiological responses and water use efficiency in (Sorghum bicolor L. Moench) under low moisture regime. Agric Water Manag. 208(February):431–439. doi: 10.1016/j.agwat.2018.06.042.
  • Abdel Latef AAH, Mostofa MG, Rahman MM, Abdel-Farid IB, Tran L-SP. 2019. Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants. J Plant Growth Regul. 38(3):966–979. doi: 10.1007/s00344-018-9906-8.
  • Ahanger MA, Hashem A, Abd-Allah EF, Ahmad P. 2014. Arbuscular mycorrhiza in crop improvement under environmental stress. Emerg Technol Manag Crop Stress Toler. 2:69–95.
  • Ali S, Moon Y, Hamayun M, Khan MA, Bibi K, Lee I, Ali S, Moon Y, Hamayun M, Aaqil M. 2022. Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. J Plant Interact. 17(1):2022.
  • Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Toubali S, Ait Rahou Y, et al. 2020. Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front Plant Sci. 11(October):516818. doi: 10.3389/fpls.2020.516818.
  • Aubert G. 1978. Méthodes d’analyses des sols. 2nd ed., Methods soil anal. Vol. 191. Marseille: Centre régional de documentation pédagogique.
  • Augé RM, Toler HD, Saxton AM. 2014. Arbuscular mycorrhizal symbiosis and osmotic adjustment in resp onse to NaCl stress: a meta-analysis. Front Plant Sci. 5(Oct):1–14.
  • Augé RM, Toler HD, Saxton AM. 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza. 25(1):13–24. doi: 10.1007/s00572-014-0585-4.
  • Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q, Pan J, Liu Y, Feng H. 2019. 2019. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int J Mol Sci. 20(17):4199. doi: 10.3390/ijms20174199.
  • Bashir SS, Hussain A, Hussain SJ, Wani OA, Zahid Nabi S, Dar NA, Baloch FS, Mansoor S. 2021. Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms. Biotechnol Biotechnol Equip. 35(1):1912–1925. doi: 10.1080/13102818.2021.2020161.
  • Baslam M, Antolín MC, Gogorcena Y, Muñoz F, Goicoechea N. 2014. Changes in alfalfa forage quality and stem carbohydrates induced by AMF and elevated atmospheric CO2. Ann Appl Biol. 164(2):190–199. doi: 10.1111/aab.12092.
  • Becklin KM, Anderson JT, Gerhart LM, Wadgymar SM, Wessinger CA, Ward JK. 2016. Update on plant physiology and climate change examining plant physiological responses to climate change through an evolutionary lens. Plant Physiol. 172(2):635–649. doi: 10.1104/pp.16.00793.
  • Behnassi M, Barjees M, Mahjoub B, Haiba E, Reed MR. 2021. Emerging challenges to food production and security in Asia, Middle East, and Africa climate risks and resource scarcity.
  • Benaffari W, Boutasknit A, Anli M, Ait-El-Mokhtar M, Ait-Rahou Y, Ben-Laouane R, Ahmed H, BenMitsui T, Baslam M, Meddich A, et al. 2022. The native arbuscular mycorrhizal fungi and vermicompost-based organic amendments enhance soil fertility, growth performance, and the drought stress tolerance of quinoa. Plants. 11(3):393. doi: 10.3390/plants11030393.
  • Ben-Laouane R, Ait-El-Mokhtar M, Anli M, Boutasknit A, Ait Rahou Y, Raklami A, Oufdou K, Wahbi S, Meddich A. 2021. Green compost combined with mycorrhizae and rhizobia: a strategy for improving alfalfa growth and yield under field conditions. Gesunde Pflanz.
  • Ben-Laouane R, Baslam M, Ait-El-Mokhtar M, Anli M, Boutasknit A, Ait-Rahou Y, Toubali S, Mitsui T, Oufdou K, Wahbi S, et al. 2020. Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms. 8(11):1–27.
  • Ben-Laouane R, Meddich A, Bechtaoui N, Oufdou K, Wahbi S. 2019. Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanz. 71(2):135–146. doi: 10.1007/s10343-019-00461-x.
  • Besaliev IN, Bolodurina IP, Parfenov DI, Akimov SS. 2021. Development of a digital model for assessing the influence of agroecological factors on the productivity of wheat grains development of a digital model for assessing the influence of agroecological factors on the productivity of wheat grains. IOP Sci.
  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. p. 1–10.
  • Bitaraf N, Saadatmand S, Mehregan I, Ahmadvand R, Ebadi M. 2020. Evaluation of mitigation effects of Glomus mosseae on Triticum aestivum L., cv. Chamran under drought stress. Period Tche Quim. 17(34):1033–1045. doi: 10.52571/PTQ.v17.n34.2020.1065_P34_pgs_1033_1045.pdf.
  • Boutasknit A, Baslam M, Ait-El-Mokhtar M, Anli M, Ben-Laouane R, Ait-Rahou Y, Mitsui T, Douira A, El Modafar C, Wahbi S, et al. 2021. Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Sci Rep. 11(1):1–23. doi: 10.1038/s41598-021-02018-3.
  • Boutasknit A, Baslam M, Ait-El-Mokhtar M, Anli M, Ben-Laouane R, Douira A, Modafar CE, Mitsui T, Wahbi S, Meddich A. 2020. Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in)organic adjustments. Plants. 9(1):80. doi: 10.3390/plants9010080.
  • Bradford M. 1976. A Rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding MARION. Reprod Res Lab. 72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3.
  • Brouziyne Y, Abouabdillah A, Bouchaou L, Attar O, Ez-Zaouy Y, Benaabidate L, Chehbouni A. 2022. Toward better preparedness of mediterranean rainfed agricultural systems to future climate-change-induced water stress: study case of Bouregreg watershed (Morocco). Conference: the 2nd International Laayoune Forum on Biosaline Agriculture; June 14–16; Laayoune, Morocco. https://lafoba2.sciforum.net/At: doi: 10.3390/environsciproc2022016058.
  • Carillo P, Mastrolonardo G, Nacca F, Parisi D, Verlotta A, Fuggi A. 2008. Nitrogen metabolism in durum wheat under salinity : accumulation of proline and glycine betaine. Funct Plant Biol. 35(5):412–426. doi: 10.1071/FP08108.
  • Chauhan A, Saini R, Sharma JC. 2022. Plant growth promoting rhizobacteria and their biological properties for soil enrichment and growth promotion. J Plant Nutr. 45(2):273–299. doi: 10.1080/01904167.2021.1952221.
  • Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E. 2016. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 171(2):1009–1023.
  • Chun SC, Paramasivan M, Chandrasekaran M. 2018. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol. 9(October):1–13. doi: 10.3389/fmicb.2018.02525.
  • Dhindsa RS, Matowe W. 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot. 32(1):79–91. doi: 10.1093/jxb/32.1.79.
  • Drobek M, Frąc M, Cybulska J. 2019. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress–a review. Agronomy. 9(6):335. doi: 10.3390/agronomy9060335.
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28(3):350–356. doi: 10.1021/ac60111a017.
  • Duo LA, Liu CX, Zhao SL. 2018. Alleviation of drought stress in turfgrass by the combined application of nano-compost and microbes from compost. Russ J Plant Physiol. 65(3):419–426. doi: 10.1134/S102144371803010X.
  • El Bilali H, El Ghmari H, Harbouz R. 2021. Transition to organic agriculture in Morocco. AGR. 6(3):718–735. doi: 10.7251/AGRENG2103005E.
  • Er-Raki S, Ezzahar J, Merlin O, Amazirh A, Hssaine BA, Kharrou MH, Khabba S, Chehbouni A. 2021. Performance of the hydrus-1d model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco. Agric Water Manag. 244(July 2020):106546. doi: 10.1016/j.agwat.2020.106546.
  • Gamalero E, Glick BR. 2022. Recent advances in bacterial amelioration of plant drought and salt stress. Biology. 11(3):437. doi: 10.3390/biology11030437.
  • Habib N, Ali Q, Ali S, Javed MT, Zulqurnain Haider M, Perveen R, Shahid MR, Rizwan M, Abdel-Daim MM, Elkelish A, et al. 2020. Use of nitric oxide and hydrogen peroxide for better yield of wheat (Triticum aestivum L.) under water deficit conditions: growth, osmoregulation, and antioxidative defense mechanism. Plant. 9(2):285. doi: 10.3390/plants9020285.
  • Harley PC, Loreto F, Marco G, Di, Sharkey TD. 1992. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol. 98(4):1429–1436. doi: 10.1104/pp.98.4.1429.
  • Hasanuzzaman M, Parvin K, Bardhan K, Nahar K, Anee TI. 2021. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. p. 1–29.
  • He J, Zou Y, Wu Q, Ku K. 2020. Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Agris. 262(December 2019):1–8.
  • Hermans K, McLeman R. 2021. Climate change, drought, land degradation and migration: exploring the linkages. Curr Opin Environ Sustain. 50:236–244. doi: 10.1016/j.cosust.2021.04.013.
  • Hori K, Wada A, Shibuta T. 1997. Changes in phenoloxidase activities of the galls on leaves of ulmus davidana formed by Tetraneura fusiformis (Homoptera: Eriosomatidae). Appl Entomol Zool. 32(2):365–371. doi: 10.1303/aez.32.365.
  • Hossain ME, Shahrukh S, Hossain SA. 2022. Chemical fertilizers and pesticides: impacts on soil degradation, groundwater, and human health in Bangladesh. In: Singh VP, Yadav S, Yadav KK, Yadava RN, editors. Environmental degradation: challenges and strategies for mitigation. Cham: Springer International Publishing; p. 63–92. doi: 10.1007/978-3-030-95542-7_4.
  • Huang Y, Srivastava AK, Zou Y, Ni Q, Han Y, Wu Q. 2014. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Front Microbiol. 5(December):1–7.
  • Islam F, Yasmeen T, Ali Q, Ali S, Saleem M, Hussain S, Rizvi H. 2014. Ecotoxicology and environmental safety in fluence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf. 104:285–293. doi: 10.1016/j.ecoenv.2014.03.008.
  • Ka H, Jh J. 2018. Plant growth-promoting rhizobacteria improved salinity tolerance of Lactuca sativa and Raphanus sativus. J Microbiol Biotechnol. 28:938–945.
  • Kaur G, Asthir B. 2015. Proline: a key player in plant abiotic stress tolerance. Biologia Plant. 59(4):609–619. doi: 10.1007/s10535-015-0549-3.
  • Kour D, Yadav AN. 2022. bacterial mitigation of drought stress in plants: current perspectives and future challenges. Curr Microbiol. 79(9):248. doi: 10.1007/s00284-022-02939-w.
  • Le Pioufle O, Ganoudi M, Calonne-Salmon M, Ben Dhaou F, Declerck S. 2019. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress. Front Plant Sci. 10:897. doi: 10.3389/fpls.2019.00897.
  • Li W, Li W-b, Xing L, Guo S. 2022. Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on microorganism of phenanthrene and pyrene contaminated soils. Int J Phytoremediation. 25:1–12. doi: 10.1080/15226514.2022.2071832.
  • Li X, Sun P, Zhang Y, Jin C, Guan C. 2020. A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environ Exp Bot. 174(March):104023. doi: 10.1016/j.envexpbot.2020.104023.
  • Liu C-Y, Zhang F, Zhang D-J, Srivastava AK, Wu Q-S, Zou Y-N. 2018. Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Sci Rep. 8(1):9. doi: 10.1038/s41598-018-20456-4.
  • Lokhandwala A, Hoeksema JD. 2019. Priming by arbuscular mycorrhizal fungi of plant antioxidant enzyme production: a meta-analysis. Annu Plant Rev. 2:1069–1084.
  • Maheshwari DK, Kumar S, Maheshwari NK, Patel DA, Saraf M. 2012. Bacteria in agrobio str manag.
  • Mansour E, Mahgoub HAM, Mahgoub SA, El-Sobky A, Abdul-Hamid MI, Kamara MM, AbuQamar SF, El-Tarabily KA, Desoky M. 2021. Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions. Sci Rep. 11(1):24142. doi: 10.1038/s41598-021-02847-2.
  • Mastouri H, Benhamou B, Hamdi H, Mouyal E. 2015. Discomfort analysis of a green house in Marrakech region. International Renewable and Sustainable Energy Conference (IRSEC). p. 1–6.
  • Meddich A, Ait El Mokhtar M, Bourzik W, Mitsui T, Baslam M, Hafidi M. 2018. Optimizing growth and tolerance of date palm (Phoenix dactylifera L.) to drought, salinity, and vascular fusarium-induced wilt (Fusarium oxysporum) by application of arbuscular mycorrhizal fungi (AMF). App Sci (June). p. 239–258.
  • Meddich A, Ait Rahou Y, Boutasknit A, Ait-El-Mokhtar M, Fakhech A, Lahbouki S, Benaffari W, Ben-Laouane R, Wahbi S. 2022. Role of mycorrhizal fungi in improving the tolerance of melon (Cucumus melo) under two water deficit partial root drying and regulated deficit irrigation. Plant Biosyst. 156(2):469–479. doi: 10.1080/11263504.2021.1881644.
  • Meddich A, Jaiti F, Bourzik W, Asli A, El, Hafidi M. 2015. Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Sci Hortic. 192:468–474. doi: 10.1016/j.scienta.2015.06.024.
  • Miceli A, Moncada A, Vetrano F. 2021. Use of microbial biostimulants to increase the salinity tolerance of vegetable transplants. Agronomy. 11(6):1143. doi: 10.3390/agronomy11061143.
  • Miransari M, Abrishamchi A, Khoshbakht K, Niknam V. 2014. Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol. 34(2):123–133. doi: 10.3109/07388551.2012.731684.
  • Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. 2013. Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev. 37(3):384–406. doi: 10.1111/1574-6976.12019.
  • Olsen SR, Sommers LE. 1982. Phosphorus. In: Methods of Soil Analysis Part 2 Chemical and Microbiological Properties. Madison, WI: American Society of Agronomy; Soil Science Society of America; p. 403–430.
  • Ouhaddou R, Ben-Laouane R, Lahlali R, Anli M, Ikan C, Boutasknit A, Slimani A, Oufdou K, Baslam M, Ait Barka E, et al. 2022. Application of indigenous rhizospheric microorganisms and local compost as enhancers of lettuce growth, development, and salt stress tolerance. Microorganisms. 10(8):1625.
  • Ouledali S, Ennajeh M, Ferrandino A, Khemira H, Schubert A, Secchi F. 2019. Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants. South African J Bot. 121:152–158. doi: 10.1016/j.sajb.2018.10.024.
  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. (October 2014):1–54.
  • Pasbani B, Salimi A, Aliasgharzad N, Hajiboland R. 2020. Colonization with arbuscular mycorrhizal fungi mitigates cold stress through improvement of antioxidant defense and accumulation of protecting molecules in eggplants. Sci Hortic. 272(July):109575. doi: 10.1016/j.scienta.2020.109575.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55(1):158–IN18. doi: 10.1016/S0007-1536(70)80110-3.
  • Polle A, Otter T, Seifert F. 1994. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106(1):53–60. doi: 10.1104/pp.106.1.53.
  • Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM. 2017. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci. 8:1056. doi: 10.3389/fpls.2017.01056.
  • Rahbarian R, Khavari-Nejad R, Ganjeali A, Bagheri A, Najafi F. 2011. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biol Cracoviensia Ser Bot. 53(1):47–56.
  • Raklami A, Tahiri A, Bechtaoui N, Abdelhay EG, Pajuelo E, Baslam M, Meddich A, Oufdou K. 2021. Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. J Environ Sci. 99:210–221. doi: 10.1016/j.jes.2020.06.032.
  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, et al. 2022. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol. 1–28. doi: 10.1080/07388551.2022.2093695.
  • Reeves G, Tripathi A, Singh P, Jones MRW, Nanda AK, Musseau C, Craze M, Bowden S, Walker JF, Bentley AR, et al. 2022. Monocotyledonous plants graft at the embryonic root–shoot interface. Nature. 602(7896):280–286. doi: 10.1038/s41586-021-04247-y.
  • Ren C, Kong C, Yan K, Xie Z. 2019. Transcriptome analysis reveals the impact of arbuscular mycorrhizal symbiosis on Sesbania cannabina expose to high salinity. Sci Rep. 9(1):2780. doi: 10.1038/s41598-019-39463-0.
  • Sánchez-Blanco MJ, Ferrández T, Morales MA, Morte A, Alarcón JJ. 2004. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. J Plant Physiol. 161(6):675–682. doi: 10.1078/0176-1617-01191.
  • Santander C, Aroca R, Cartes P, Vidal G, Cornejo P. 2021. Plant physiology and biochemistry aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. Plant Physiol Biochem. 158:396–409. doi: 10.1016/j.plaphy.2020.11.025.
  • Saxena R, Kumar M, Tomar RS. 2019. Plant responses and resilience towards drought and salinity stress. Plant Arch. 19(July 2021):50–58.
  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 10(2):259. doi: 10.3390/plants10020259.
  • Seutra Kaba J, Abunyewa AA, Kugbe J, Kwashie GK, Owusu Ansah E, Andoh H. 2021. Arbuscular mycorrhizal fungi and potassium fertilizer as plant biostimulants and alternative research for enhancing plants adaptation to drought stress: opportunities for enhancing drought tolerance in cocoa (Theobroma cacao L.). Sustain Environ. 7(1):1963927. doi: 10.1080/27658511.2021.1963927.
  • Shah ZH, Rehman HM, Akhtar T, Daur I, Nawaz MA, Ahmad MQ, Rana IA, Atif RM, Yang SH, Chung G. 2017. Redox and ionic homeostasis regulations against oxidative, salinity and drought stress in wheat (a systems biology approach). Front Genet. 8:141. doi: 10.3389/fgene.2017.00141.
  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 18(6–7):287–296. doi: 10.1007/s00572-008-0180-7.
  • Shiva S, Prasad K, Vardharajula S, Shrivastava M, Skz A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res. 184:13–24. doi: 10.1016/j.micres.2015.12.003.
  • Singh JS. 2012. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol. 14(4):605–611.
  • Slama A, Cherif A, Boukhchina S. 2021. Importance of new edible oil extracted from seeds of seven cereals species. J Food Qual. 2021:1–8. doi: 10.1155/2021/5531414.
  • Sohag AAM, Tahjib-Ul-Arif M, Polash MAS, Chowdhury MB, Afrin S, Burritt DJ, Murata Y, HM, Anwar Hossain, M, Afzal. 2020. New frontiers in stress management for durable agriculture. Agronomy. 11(3):547. doi: 10.3390/agronomy11030547.
  • Song Q, Song X, Deng X, Luo J, Wang J, Min K, Song R. 2021. Effects of plant growth promoting rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica seedlings. Scand J for Res. 36(4):249–262. doi: 10.1080/02827581.2021.1917649.
  • Tamirat N, Abafita J. 2021. Adoption of row planting technology and household welfare in southern ethiopia, in case of wheat grower farmers in Duna district, Ethiopia. Asia-Pac J Sci Technol. 26(2):1–12.
  • Tejera García A, Olivera M, Iribarne C, Lluch C. 2004. Partial purification and characterization of a non-specific acid phosphatase in leaves and root nodules of Phaseolus vulgaris. Plant Physiol Biochem. 42(7–8):585–591. doi: 10.1016/j.plaphy.2004.04.004.
  • Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Estimation of VA mycorhizal infection levels. Research for method having a functional significance. Pascal Fr. p. 217–221.
  • Uzilday B, Turkan I, Sekmen AH, Ozgur R, Karakaya HC. 2012. Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Sci. 182:59–70. doi: 10.1016/j.plantsci.2011.03.015.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 151(1):59–66. doi: 10.1016/S0168-9452(99)00197-1.
  • Wang H, Tang X, Wang H, Shao H-B. 2015. Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Front Plant Sci. 6:792. doi: 10.3389/fpls.2015.00792.
  • Yilmaz A, Karik Ü. Ü. 2022. AMF and PGPR enhance yield and secondary metabolite profile of basil (Ocimum basilicum L.). Ind Crops Prod. 176(December 2021):114327. doi: 10.1016/j.indcrop.2021.114327.
  • Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Cha-Um S. 2016. Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hortic. 198:107–117. doi: 10.1016/j.scienta.2015.11.002.
  • Zerssa G, Feyssa D, Kim DG, Eichler-Löbermann B. 2021. Challenges of smallholder farming in Ethiopia and opportunities by adopting climate-smart agriculture. Agriculture. 11(3):1–26.
  • Zhang F, Zou Y, Wu Q, Ku K. 2020. Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ Sci. 171:103926. doi: 10.1016/j.envexpbot.2019.103926.
  • Zhang T, Hu Y, Zhang K, Tian C, Guo J. 2018. Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Ind Crops Prod. 117(5268):13–19. doi: 10.1016/j.indcrop.2018.02.087.
  • Zhu X, Song F, Liu S, Liu F. 2016. Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2. J Agric Soil Sci. 202(6):486–496. doi: 10.1111/jac.12175.
  • Zingale S, Guarnaccia P, Matarazzo A, Lagioia G, Ingrao C. 2022. A systematic literature review of life cycle assessments in the Durum wheat sector. Sci Total Environ. 844(June):157230. doi: 10.1016/j.scitotenv.2022.157230.
  • Zou Y, Wu Q. 2020. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 23:50–57. doi: 10.1111/plb.13161.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.