90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geopedological influence on the wood anatomy of Gymnanthes klotzschiana (Euphorbiaceae) in a subtropical riparian forest, in Southern Brazil

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 511-522 | Received 16 Jul 2023, Accepted 19 Feb 2024, Published online: 25 Mar 2024

References

  • Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE, et al. 2000. The evolution of plant ecophysiological traits: recent advances and future directions. Bioscience. 50(11):979–995.
  • Anfodillo T, Olson ME. 2021. Tree mortality: testing the link between drought, embolism vulnerability, and xylem conduit diameter remains a priority. Front For Glob Change. 4:704670. doi: 10.3389/ffgc.2021.704670.
  • Arenas-Navarro M, Oyama K, García-Oliva F, Torres-Miranda A, De La Riva EG, Terrazas T. 2021. The role of wood anatomical traits in the coexistence of oak species along an environmental gradient. AoB Plants. 13(6):plab066. doi: 10.1093/aobpla/plab066.
  • Arévalo R, van Ee BW, Riina R, Berry PE, Wiedenhoeft AC. 2017. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system. Ann Bot. 119(4):563–579. doi: 10.1093/aob/mcw243.
  • Barddal ML. 2006. A influência da saturação hídrica na distribuição de oito espécies arbóreas da Floresta Ombrófila Mista Aluvial do rio Iguaçu, Paraná, Brasil [The influence of water saturation on the distribution of eight tree species of the Mixed Ombrophilous Alluvial Forest of the Iguaçu River, Paraná, Brazil] [PhD thesis]. Curitiba (PR): Federal University of Paraná Portuguese.
  • Barddal ML, Curcio GR, Bonnete A. 2016. Relação entre umidade do solo e distribuição de árvores do rio Iguaçu: a importância do relevo, tipo de solo e saturação hídrica na dinâmica de ocupação arbórea das margens de rios. [Relationship between soil moisture and distribution of trees of the Iguaçu River: the importance of relief, soil type and water saturation in the dynamics of tree occupation of river banks]. London (UK): Verlag. Portuguese.
  • Bhusal N, Kim HS, Han SG, Yoon TM. 2020. Photosynthetic traits and plant–water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions. Environ Exp Bot. 176:104111. doi: 10.1016/j.envexpbot.2020.104111.
  • Bianchini E, Medri ME, Pimenta JA, Giloni CPP, Kolb RM, Correa GT. 2000. Anatomical alterations in plants of Chorisia speciosa A. St.- Hil. submitted to flooding. Interciencia. 25(9):436–441.
  • Bowling AJ, Vaughn KC. 2008. Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. Am J Bot. 95(6):655–663. doi: 10.3732/ajb.2007368.
  • Camarero JJ, Colangelo M, Rodríguez-González PM, Sánchez-Miranda Á, Sánchez-Salguero R, Campelo F, Rita A, Ripullone F. 2021. Wood anatomy and tree growth covary in riparian ash forests along climatic and ecological gradientes. Dendrochronologia. 70:125891. doi: 10.1016/j.dendro.2021.125891.
  • Carlquist S. 2001. Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. New York (NY): Spring-Verlag; 446 p.
  • Castagneri D, Fonti P, Von Arx G, Carrer M. 2017. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. Ann Bot. 119(6):1011–1020. doi: 10.1093/aob/mcw274.
  • Chase MN, Johnson EA, Martin YE. 2012. The influence of geomorphic processes on plant distribution and abundance as reflected in plant tolerance curves. Ecol Monogr. 82(4):429–447. doi: 10.1890/11-2145.1.
  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, et al. 2012. Global convergence in the vulnerability of forests to drought. Nature. 491(7426):752–755. doi: 10.1038/nature11688.
  • Cosmo NL. 2012. Ecologia do lenho de 19 espécies nativas do estado do Paraná [Wood ecology of 19 native species of the state of Paraná. [PhD thesis]. Curitiba (PR): Federal University of Paraná. Portuguese.
  • Cosmo NL, Kuniyoshi YS, Botosso PC. 2010. Wood anatomy of Sebastiania commersoniana (Baillon) Smith & Downs (Euphorbiaceae): functional and ecological aspects. Acta Bot Bras. 24(3):747–755. doi: 10.1590/S0102-33062010000300018.
  • Cosmo NL, Nogueira AC, Lima JG, Kuniyoshi YS. 2010. Morphology of fruit, seed and seedling of Sebastiania commersoniana, Euphorbiaceae. RF. 40(2):419–428. doi: 10.5380/rf.v40i2.17837.
  • Curcio GR. 2006. Relações entre Geologia, Geomorfologia, Pedologia e Fitossociologia nas planícies fluviais do rio Iguaçu, Paraná, Brasil [Relations between Geology, Geomorphology, Pedology and Phytosociology in the river plains of the Iguaçu River, Paraná, Brazil] [PhD thesis]. Curitiba (PR): Federal University of Paraná Portuguese.
  • Curcio GR, Galvão F, Bonnet A, Barddal ML, Dedecek RA. 2007. The alluvial forest in two compartments of the Iguaçu River, Paraná, Brazil. RF. 37(2):125–146. doi: 10.5380/rf.v37i2.8645.
  • da Rocha ÉC, de Oliveira LM, Fantinel VS, Ribeiro Dias RA, Bagatini KP. 2020. Phenological analysis of Gymnanthes klotzschiana Müll.Arg belonging to two atlantic forest biome formations. Floresta Ambient. 27(3):2–9. doi: 10.1590/2179-8087.092217.
  • Du S, Yamamoto F. 2007. An overview of the biology of reaction wood formation. JIPB. 49(2):131–143. doi: 10.1111/j.1744-7909.2007.00427.x.
  • Duniway MC, Benson C, Nauman TW, Knight A, Bradford JB, Munson SM, Witwicki D, Livensperger C, Van Scoyoc M, Fisk TT, et al. 2022. Geologic, geomorphic, and edaphic underpinnings of dryland ecosystems: Colorado Plateau landscapes in a changing world. Ecosphere. 13(11):1–27. doi: 10.1002/ecs2.4273.
  • [EMBRAPA] Brazilian Agricultural Research Corporation. 2018. Brazilian Soil Classification System. 5nd ed. Brasília (DF): EMBRAPA. 626 p. [accessed 2023 July 15]. https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1094001/brazilian-soil-classification-systemhttps://www.embrapa.br/solos/sibcs.
  • Ewers FW, Jacobsen AL, López-Portillo J. 2023. Carlquist’s indices for vulnerability and mesomorphy of wood: are they relevant today? IAWA J. 44(3–4):355–367. doi: 10.1163/22941932-bja10113.
  • Fichtler E, Worbes M. 2012. Wood anatomical variables in tropical trees and their relation to site conditions and individual tree morphology. IAWA J. 33(2):119–140. doi: 10.1163/22941932-90000084.
  • García-González I, Souto-Herrero M. 2017. Earlywood vessel area of Quercus pyrenaica Willd. is a powerful indicator of soil water excess at growth resumption. Eur J Forest Res. 136(2):329–344. doi: 10.1007/s10342-017-1035-6.
  • Giller PS. 1984. Community structure and niche. London (UK): Chapman & Hall; p. 176.
  • Giménez JE, Hurtado MA, Kalesnik F, Martínez OR. 2011. Relationships between landforms, soils and vegetation in the River Plate coastal plain, Argentina. Water Environ J. 25(3):366–377. doi: 10.1111/j.1747-6593.2010.00232.x.
  • Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF, et al. 2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytol. 209(1):123–136. doi: 10.1111/nph.13646.
  • Gogosz AM, Boerger MRT, Cosmo NL, Nogueira AC. 2015. Morphology of diaspores and seedlings of tree species of the Araucaria Forest, in southern Brazil. RF. 45(4):819–832. doi: 10.5380/rf.v45i4.35017.
  • Gonçalves DA, da Silva AC, Higuchi P, Gross A, Junior LCR, Walter FF, Loebens R, de Fátima Missio F, Pscheidt F, de Souza Ferreira T, et al. 2018. Heterogeneity of a tree species community in an alluvial area of Santa Catarina, Brazil. Floresta Ambient. 25(2):2179–8087. doi: 10.1590/2179-8087.096514.
  • Gorshkova T, Chernova T, Mokshina N, Ageeva M, Mikshina P. 2018. Plant ‘muscles’: fibers with a tertiary cell wall. New Phytol. 218(1):66–72. doi: 10.1111/nph.14997.
  • Hacke UG, Sperry JS. 2001. Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst. 4(2):97–115. doi: 10.1078/1433-8319-00017.
  • IPCC Report I. 2022. Climate change 2022: impacts, Adaptation and Vulnerability. Summary for policymakers. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. United Nations Environment Programme UNEP. AR6.
  • Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD. 2007. Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the mediterranean-type climate region of South Africa. J Ecol. 95(1):171–183. doi: 10.1111/j.1365-2745.2006.01186.x.
  • Kanieski MR, Galvão F, Longhi-Santos T, Milani JEF, Botosso PC. 2017. Climatic parameters and diameter increment of forest species in alluvial forest in southern Brazil. Floresta Ambient. 24:e00124814. doi: 10.1590/2179-8087.124814.
  • Kanieski MR, Galvão F, Botosso PC, Soares PRC, Nicoletti MF, Konzen ER, Milani JE, de F, Longhi-Santos T, Pfutz IFP, et al. 2019. A decontamination approach altered the Gymnanthes klotzschiana Müll. Arg. vessel anatomy in southern Brazil. JAS. 11(17):196–209. doi: 10.5539/jas.v11n17p196.
  • Kemppinen J, Niittynen P, Happonen K, Le Roux PC, Aalto J, Hjort J, Maliniemi T, Karjalainen O, Rautakoski H, Luoto M. 2022. Geomorphological processes shape plant community traits in the Arctic. Global Ecol Biogeogr. 31(7):1381–1398. doi: 10.1111/geb.13512.
  • Kolb RM, Medri ME, Bianchini E, Pimenta JA, Giloni PC, Correa GT. 1998. Ecological anatomy of Sebastiania commersoniana (Baillon) Smith & Downs (Euphorbiaceae) submitted to flooding. Braz J Bot. 21(3):305–312.
  • Lens F, Gasson P, Smets E, Jansen S. 2003. Comparative wood anatomy of epacrids (Styphelioideae, Ericaceae s.l.). Ann Bot. 91(7):835–856. doi: 10.1093/aob/mcg089.
  • Lima VT, Scalon SPQ, Cardoso CAL, Reis LC, Kolb RM. 2023. Does flooding affect the survival and primary and secondary metabolism of two species of Croton? Trees. 37(4):1081–1095. doi: 10.1007/s00468-023-02407-3.
  • Lobo PC, Joly CA. 1998. Tolerance to hypoxia and anoxia in neotropical tree species. In: Scarano FR, Franco AC, editors. Ecophysiological strategies of xerophytic and anphibious plants in the neotropics. Rio de Janeiro (RJ): PPGE–UFRJ. Vol. 4, Ser Oecol Brasiliensis; p.137–156.
  • Lobo PC, Joly CA. 2000. Aspectos ecofisiológicos da vegetação de mata ciliar do sudeste do Brasil. [Ecophysiological aspects of riparian forest vegetation in southeastern Brazil.]. In: Rodrigues RR, Leitão-Filho HF, editors. Matas ciliares: conservação e recuperação. [Riparian forests: conservation and recovery] São Paulo (SP): Edusp/Fapesp; p. 143–157.
  • Longhi-Santos T, Galvão F, Botosso PC, Martins KG. 2019. Dendroecology of Gymnanthes klotzschiana Müll. Arg. in a remnant area of Alluvial Mixed Ombrophilous Forest, Southern Brazil. Ciênc Florest. 29(3):1363–1375. doi: 10.5902/1980509830256.
  • Luchi AE. 2004. Wood anatomy of Croton urucurana Baill. (Euphorbiaceae) from soils in different moisture levels. Rev Bras Bot. 27(2):271–280. doi: 10.1590/S0100-84042004000200007.
  • Martínez-Cabrera HI, Jones CS, Espino S, Schenk HJ. 2009. Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. Am J Bot. 96(8):1388–1398. doi: 10.3732/ajb.0800237.
  • Martínez-Cabrera HI, Schenk HJ, Cevallos-Ferriz SRS, Jones CS. 2011. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. Am J Bot. 98(5):915–922. doi: 10.3732/ajb.1000335.
  • Mauseth JD, Stevenson JF. 2004. Theoretical considerations of vessel diameter and condutive safety in populations of vessels. Int J Plant Sci. 165(3):359–368. doi: 10.1086/382808.
  • Mennega AMW. 2005. Wood anatomy of the subfamily euphorbioideae: a comparison with subfamilies Crotonoideae and Acalyphoideae and the implications for the circumscription of the Euphorbiaceae. IAWA J. 26(1):1–68. doi: 10.1163/22941932-90001601.
  • [MINEROPAR] - Minerais do Paraná SA. 2001. Atlas Geológico do Estado do Paraná [Geological Atlas of the State of Paraná]. Curitiba (PR): Portuguese [accessed 2023 July 15]. http://www.geografia.seed.pr.gov.br/arquivos/File/2012/atlas_geologico_parana.pdf.
  • Moran EV, Hartig F, Bell DM. 2016. Intraspecific trait variation across scales: implications for understanding global change responses. Glob Chang Biol. 22(1):137–150. doi: 10.1111/gcb.13000.
  • Nery IRAM, Vergilio PCB, Viégas LB, da Silva MR, Resende RT, Chagas MP, Pace MR, Marcati CR. 2023. Water availability influences both wood anatomy and laticifer density in rubber tree saplings. Flora. 304:152301. doi: 10.1016/j.flora.2023.152301.
  • Noe GB. 2022. Interactions among hydrogeomorphology, vegetation, and nutrient biogeochemistry in floodplain ecosystems. In: Shroder J, Butler DR, Hupp CR, editors. Treatise on geomorphology. San Diego (CA): Academic Press. Vol. 12, Ecogeomorphology; p. 307–321. doi: 10.1016/B978-0-12-818234-5.60050-0.
  • Ola A, Staples TL, Robinson N, Lovelock CE. 2020. Plasticity in the above- and below-ground development of mangrove seedlings in response to variation in soil bulk density. Estuaries Coasts. 43(1):111–119. doi: 10.1007/s12237-019-00660-9.
  • Oliveira LSD. 2023. Gymnanthes in flora e funga of Brazil. Rio de Janeiro (RJ): Botanical Garden of Rio de Janeiro. [accessed 2023 July 15]. https://floradobrasil.jbrj.gov.br/FB55510.
  • Olson M, Rosell JA, Martínez-Pérez C, León-Gómez C, Fajardo A, Isnard S, Cervantes-Alcayde MA, Echeverría A, Figueroa-Abundiz VA, Segovia-Rivas A, et al. 2020. Xylem vessel-diameter–shoot-length scaling: ecological significance of porosity types and other traits. Ecol Monogr. 90(3):1–32. doi: 10.1002/ecm.1410.
  • Olson ME. 2023. A skeptic’s guide to Sherwin Carlquist’s inferences of xylem function. Iawa J. 44(3–4):287–303. doi: 10.1163/22941932-bja10109.
  • Olson ME, Pace MR, Anfodillo T. 2023. The vulnerability to drought-induced embolism-conduit diameter link: breaching the anatomy-physiology divide. IAWA J. 44(3–4):335–354. doi: 10.1163/22941932-bja10123.
  • Parvin D, Rashid P, Karmoker J. 2018. Anatomical responses of jute (Corchorus capsularis L. cv. D-154) to waterlogging. Dhaka Univ J Biol Sci. 27(2):213–219. doi: 10.3329/dujbs.v27i2.46470.
  • Pasdiora AL, Ceni DCDA, Borgo M, Curcio GR, Duarte E, Marcon AK, Galvão F. 2021. Do soil variations influence the floristic-structural composition of alluvial forests? Ciencia Florestal. 31(4):671–1694.
  • R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [accessed 2022 November 21]. Available at: https://www.R-project.org/.
  • Scholz A, Stein A, Choat B, Jansen S. 2014. How drought and deciduousness shape xylem plasticity in three Costa Rican woody plant species. IAWA J. 35(4):337–355. doi: 10.1163/22941932-00000070.
  • Schweingrube FH. 1996. Tree rings and environment dendroecology.Berne: Paul Haupt; p. 609.
  • Silva JO, Galvão F, Silva AC, Higuchi P. 2020. Floristic patterns of alluvial forests in Atlantic Forest and Pampa: climate and geographic insertion as determining factors. An Acad Bras Cienc. 92(3):e20180803. doi: 10.1590/0001-3765202020180803.
  • Silva da Costa W, Da Cunha M, Pena-Rodrigues JFP, de Andrade IM, Valladares F, Franca Barros C. 2020. Intraspecific variation in functional wood anatomy of tropical trees caused by effects of forest edge. For Ecol Manage. 473:118305. doi: 10.1016/j.foreco.2020.118305.
  • Sperry JS. 2003. Evolution of water transport and xylem structure. Int J Plant Sci. 164(S3):S115–S127. doi: 10.1086/368398.
  • Sperry JS, Hacke UG, Pittermann J. 2006. Size and function in conifer tracheids and angiosperm vessels. Am J Bot. 93(10):1490–1500. doi: 10.1086/368398.
  • Tyree MT, Zimmermann MH. 2002. Xylem structure and the ascent of sap. 2nd ed. Berlin: Springer-Verlag; p. 284.
  • Valladares F, Sanchez-Gomez D, Zavala MA. 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol. 94(6):1103–1116.
  • Westerband A, Funk J, Barton K. 2021. Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. Ann Bot. 127(4):397–410. doi: 10.1093/aob/mcab011.
  • Wiley E, Estes AG. 2023. The impacts of late season defoliation and winter flooding on spring leaf flush and carbohydrate remobilization in pin oak. Trees - Struct Funct. 37(4):1069–1080. doi: 10.1007/s00468-023-02406-4.
  • Yáñez-Espinosa L, Terrazas T. 2001. Wood and bark anatomy of Annona glabra L. under flooding. Agrociencia. 35(1):51–63.
  • Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA. 2010. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot. 97(2):207–215. doi: 10.3732/ajb.0900178.
  • Zhang Y, Zhang S, Li J, Li Z, Li H, Mao J, Zhai F, Liu J, Sun Z. 2023. Gender-specific responses of Salix viminalis roots in morphology and physiology subjected to flooding. Flora. 303:152296. doi: 10.1016/j.flora.2023.152296.
  • Zhu SD, Chen YJ, Fu PL, Cao KF. 2017. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability. Tree Physiol. 37(11):1469–1477. doi: 10.1093/treephys/tpx094.
  • Zonta EI, Vargas GK, Jarenkow JA. 2021. Intraspecific trait variability of a typical tree species of riverine forests in southern Brazil. Flora. 279:151806. doi: 10.1016/j.flora.2021.151806.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.