27
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Arbuscular mycorrhizal fungi increase the tolerance to excess zinc of a tropical legume grown in iron-ore mining waste

, , , & ORCID Icon
Pages 852-862 | Received 16 Jan 2024, Accepted 27 May 2024, Published online: 02 Jul 2024

References

  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals – Concepts and applications. Chemosphere. 91(7):869–881. doi: 10.1016/j.chemosphere.2013.01.075.
  • Ahmad E, Zaidi A, Khan MS, Oves M. 2012. Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. In: zaidi A, Wani PA, Khan MS, editors. Toxicity of heavy metals to legumes and bioremediation, Springer-Verlag, Viena; p. 29–44.
  • Balafrej H, Bogusz D, Triqui ZEA, Guedira A, Bendaou N, Smouni A, Fahr M. 2020. Zinc hyperaccumulation in plants: a review. Plants (Basel). 9(5):562. doi: 10.3390/plants9050562.
  • Bhantana P, Rana MS, Sun X, Moussa MG, Saleem MH, Syaifudin M, Shah A, Poudel A, Pun AB, Bhat MA, et al. 2021. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis. 84(1):19–37. doi: 10.1007/s13199-021-00756-6.
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants. New Phytol. 173(4):677–702. doi: 10.1111/j.1469-8137.2007.01996.x.
  • Carmo CAFS, Araújo WS, Bernardi ACC, Saldanha MFC. 2000. Métodos de Análise de Tecidos Vegetais Utilizados na Embrapa Solos. [Plant Tissue Analysis Methods Used at Embrapa Soils]. Circular Técnica n°6. ISSN 1517–5146.
  • Dhalaria R, Kumar D, Kumar H, Nepovimova E, Kuča K, Islam TM, Verma R. 2020. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy. 10(6):815. doi: 10.3390/agronomy10060815.
  • Gai APC, dos Santos DS, Vieira EA. 2017. Effects of zinc excess on antioxidant metabolism, mineral content and initial growth of Handroanthus impetiginosus (Mart. ex DC.) Mattos and Tabebuia roseoalba (Ridl.) Sandwith. Environ Exp Bot. 144:88–99. doi: 10.1016/j.envexpbot.2017.09.006.
  • Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta. 990(1):87–92. doi: 10.1016/S0304-4165(89)80016-9.
  • Genty B, Harbinson J, Cailly AL, Rizza F. 1996. Fate of excitation at PSII in leaves: the non-photochemical side. In Third BBSRC Robert Hill Symposium on Photosynthesis, March (Vol. 31).
  • Giovannetti M, Mosse B. 1979. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84(3):489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x.
  • Gupta N, Ram H, Kumar B. 2016. Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Rev Environ Sci Biotechnol. 15(1):89–109. doi: 10.1007/s11157-016-9390-1.
  • Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207(4):604–611. doi: 10.1007/s004250050524.
  • Janeeshma E, Puthur JT. 2020. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch Microbiol. 202(1):1–16. doi: 10.1016/j.scienta.2011.06.045.
  • Kabata-Pendias A. 2000. Trace Elements in Soils and Plants. 3rd Edition, CRC Press, Boca Raton.
  • Kaur H, Garg N. 2021. Zinc toxicity in plants: a review. Planta. 253(6):129. doi: 10.1007/s00425-021-03642-z.
  • Khan M, Shaheen S, Ali S, Yi Z, Cheng L, Samrana KMD, Azam M, Rizwan M, Afzal M, Irum G, et al. 2020. In Situ Phytoremediation of Metals. Concepts and Strategies in Plant Sciences. In: shmaefsky, BR. editor. Phytoremediation: in-situ applications. Springer Nature p. 103–121.
  • Koske RE, Gemma JN. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res. 92(4):486–488. doi: 10.1016/S0953-7562(89)80195-9.
  • Malavolta E, Vitti GC, Oliveira SAD. 1997. Avaliação do estado nutricional das plantas: princípios e aplicações [Evaluation of the plant nutritional status: principles and applications]. Piracicaba (SP): POTAFOS.
  • Martins CC, Nakagawa J. 2008. Germinação de sementes de Stryphnodendron adstringens (Mart.) Coville de diferentes origens submetidas a tratamentos para superação de dormência [Germination of Stryphnodendron adstringens (Mart.) Coville seeds of different origins subjected to treatments to overcome dormancy]. Rev Árvore. 32(6):1059–1067. Portuguese doi: 10.1590/S0100-67622008000600011.
  • Meira M, Cabacinha C, Figueiredo L, Martins E. 2013. Barbatimão: ecologia, produção de tanino e potencial sócio econômico na região norte mineira [Barbatimão: ecology, tannin production and socio-economic potential in the northern region of Minas Gerais]. Enciclopédia Biosfera. 9(16):466–494. Portuguese.
  • Moreira BC, Prates P, Jordão TC, Silva M, Ribeiro APF, Stürmer SL, Salomão LCC, Otoni WC, Kasuya MCM. 2019. Effect of inoculation of pineapple plantlets with arbuscular mycorrhizal fungi obtained from different inoculum sources multiplied by the on-farm method. Rev Bras Ciênc Solo. 43:e0180148 doi: 10.1590/18069657rbcs20180148.
  • Moreno Jiménez E, Ferrol N, Corradi N, Peñalosa JM, Rillig MC. 2024. The potential of arbuscular mycorrhizal fungi to enhance metallic micronutrient uptake and mitigate food contamination in agriculture: prospects and challenges. New Phytol. 242(4):1441–1447. doi: 10.1111/nph.19269.
  • Nguyen TD, Cavagnaro TR, Watts-Williams SJ. 2019. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Sci Rep. 9(1):14880. doi: 10.1038/s41598-019-51369-5.
  • Pedroso DF, Barbosa MV, dos Santos JV, Pinto FA, Siqueira JO, Carneiro MAC. 2018. Arbuscular mycorrhizal fungi favor the initial growth of Acacia mangium, Sorghum bicolor, and Urochloa brizantha in soil contaminated with Zn, Cu, Pb, and Cd. Bull Environ Contam Toxicol. 101(3):386–391. doi: 10.1007/s00128-018-2405-6.
  • Prates Júnior P, Moreira BC, Silva M, Diogo NV, Luz JMRD, Jordão TC, Paiva HN, Kasuya MCM. 2021. Mycorrhizal inoculation and phosphorus fertilization show contrasts on native species of the Brazilian Atlantic Forest and Cerrado. Revista Brasileira De Ciência Do Solo. 45:e0210013. doi: 10.36783/18069657rbcs20210013.
  • Quan L, Zhang J, Wei Q, Wang Y, Qin C, Hu F, Chen Y, Shen Z, Xia Y. 2021. Promotion of zinc tolerance, acquisition and translocation of phosphorus in Mimosa pudica L. mediated by arbuscular mycorrhizal fungi. Bull Environ Contam Toxicol. 106(3):507–515. doi: 10.1007/s00128-021-03113-x.
  • Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, et al. 2021. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater. 402:123919. doi: 10.1016/j.jhazmat.2020.123919.
  • Rios CO, Siqueira-Silva AI, Pereira EG. 2021. How does drought affect native grasses’ photosynthesis on the revegetation of iron ore tailings? Environ Sci Pollut Res Int. 28(12):14797–14811. doi: 10.1007/s11356-020-11599-x.
  • Rios CO, Siqueira-Silva AI, Pereira EG. 2023. Revegetation of mining-impacted sites with a tropical native grass: constraints of climate seasonality and trace-element accumulation. J Environ Manage. 326(Pt A):116655. doi: 10.1016/j.jenvman.2022.116655.
  • Ruscitti M, Arango M, Beltrano J. 2017. Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theor Exp Plant Physiol. 29(1):37–49. doi: 10.1007/s40626-016-0081-7.
  • Sabino APL, Eustáquio LMS, Miranda ACF, Biojone C, Mariosa TN, Gouvêa CMCP. 2018. Stryphnodendron adstringens (“Barbatimão”) leaf fraction: chemical characterization, antioxidant activity, and cytotoxicity towards human breast cancer cell lines. Appl Biochem Biotechnol. 184(4):1375–1389. doi: 10.1007/s12010-017-2632-z.
  • Schneider J, Stürmer SL, Guilherme LRG, de Souza Moreira FM, Soares CRFS. 2013. Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mater. 262:1105–1115. doi: 10.1016/j.jhazmat.2012.09.063.
  • Silva RF, Antoniolli ZI, Grolli AL, Scheid DL, Bertollo GM, Missio EL. 2018. Crescimento e tolerância de mudas de Enterolobium contortisiliquum Vell. cultivadas em solo contaminado com zinco [Growth and tolerance of Enterolobium contortisiliquum Vell. Seedlings cultivated in soil contamined with zinc]. Ciênc Florest. 28(3):979–986. Portuguese doi: 10.5902/1980509833374.
  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30(9):1035–1040. doi: 10.1111/j.1365-3040.2007.01710.x.
  • Souza SCR, Souza LA, Schiavinato MA, de Oliveira Silva FM, de Andrade SAL. 2020. Zinc toxicity in seedlings of three trees from the Fabaceae associated with arbuscular mycorrhizal fungi. Ecotoxicol Environ Saf. 195:110450. doi: 10.1016/j.ecoenv.2020.110450.
  • Stürmer SL, Kemmelmeier K, Moreira BC, Kasuya MCM, Pereira GMD, da Silva K. 2018. Arbuscular mycorrhizal fungi (Glomeromycota) communities in tropical savannas of Roraima, Brazil. Mycol Progress. 17(10):1149–1159. doi: 10.1007/s11557-018-1430-5.
  • Tiwari J, Ma Y, Bauddh K. 2022. Arbuscular mycorrhizal fungi: an ecological accelerator of phytoremediation of metal contaminated soils. Arch Agron Soil Sci. 68(2):283–296. doi: 10.1080/03650340.2020.1829599.
  • Watts-Williams SJ, Smith FA, McLaughlin MJ, Patti AF, Cavagnaro TR. 2015. How important is the mycorrhizal pathway for plant Zn uptake? Plant Soil. 390(1–2):157–166. doi: 10.1007/s11104-014-2374-4.
  • Yahaghi Z, Shirvani M, Nourbakhsh F, Pueyo JJ. 2019. Uptake and effects of lead and zinc on alfalfa (Medicago sativa L.) seed germination and seedling growth: role of plant growth promoting bacteria. S Afr J Bot. 124:573–582. doi: 10.1016/j.sajb.2019.01.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.