42
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nelson algebras, residuated lattices and rough sets: A survey

ORCID Icon, ORCID Icon & ORCID Icon
Pages 368-428 | Received 10 Jun 2023, Accepted 10 Nov 2023, Published online: 14 Apr 2024

References

  • Aglianò, P., & Marcos, M. A. (2022). Varieties of K-lattices. Fuzzy Sets and Systems, 442, 222–248. https://doi.org/10.1016/j.fss.2021.08.020
  • Alexandroff, P. (1937). Diskrete Räume. Matematičeskij Sbornik, 2, 501–518.
  • Almukdad, A., & Nelson, D. (1984). Constructible falsity and inexact predicates. Journal of Symbolic Logic, 49(1), 231–233. https://doi.org/10.2307/2274105
  • Balbes, R., & Dwinger, P. (1974). Distributive lattices. University of Missouri Press.
  • Banerjee, M. (1997). Rough sets and 3-valued Łukasiewicz logic. Fundamenta Informaticae, 31(3,4), 213–220. https://doi.org/10.3233/FI-1997-313401
  • Banerjee, M., & Chakraborty, M. K. (1996). Rough sets through algebraic logic. Fundamenta Informaticae, 28(3,4), 211–221. https://doi.org/10.3233/FI-1996-283401
  • Banerjee, M., & Chakraborty., M. K. (2004). Algebras from rough sets. In S. K. Pal, L. Polkowski, & A. Skowron (Eds.), Rough-neural computing: Techniques for computing with words (pp. 157–184). Springer.
  • Belnap, N. D. (1977). A useful four-valued logic. In J. M. Dunn & G. Epstein (Eds.), Modern uses of multiple-valued logics. Invited Papers from the Fifth International Symposium on Multiple-Valued Logic held at Indiana University, Bloomington, Indiana, May 13–16, 1975, with a bibliography of many-valued logic by Robert. G. Wolf (pp. 8–37). volume 2 of Episteme. A series in the foundational, methodological, philosophical, psychological, sociological and political aspects of the sciences, pure and applied. D. Riedel Publishing Company.
  • Bialynicki-Birula, A., & Rasiowa, H. (1957). On the representation of quasi-Boolean algebras. Bulletin de l'Académie Polonaise des Sciences, Classe III, Bd. 5 (1957), S. 259–261.
  • Birkhoff, G. (1937). Rings of sets. Duke Mathematical Journal, 3, 443–454.
  • Birkhoff, G. (1967). Lattice theory (3rd ed.). Number 25 in Colloquium Publ.. American Mathematical Society.
  • Blok, W. J., & Jónsson, B. (Jan. 1999). Algebraic structures for logic. Twenty-third Holiday Mathematics Symposium, Lecture notes. New Mexico State University.
  • Blok, W. J., Köhler, P., & Pigozzi, D. (1984). On the structure of varieties with equationally definable principal congruences II. Algebra Universalis, 18(3), 334–379. https://doi.org/10.1007/BF01203370
  • Blok, W. J., & Pigozzi, D. (1989). Algebraizable logics. Memoirs of the American Mathematical Society, 77(396). https://doi.org/10.1090/memo/0396
  • Blok, W. J., & Pigozzi, D. (1994). On the structure of varieties with equationally definable principal congruences III. Algebra Universalis, 32(4), 545–608. https://doi.org/10.1007/BF01195727
  • Blyth, T. (2005). Lattices and ordered algebraic structures. Springer-Verlag.
  • Boicescu, V., Filipoiu, A., Georgescu, G., & Rudeanu, S. (1991). Łukasiewicz–Moisil algebras. North-Holland Publishing Company.
  • Bonikowski, Z. (1992). A certain conception of the calculus of rough sets. Notre Dame Journal of Formal Logic, 33(3), 412–121. https://doi.org/10.1305/ndjfl/1093634405
  • Bou, F., & Rivieccio, U. (2011). The logic of distributive bilattices. Logic Journal of the IGPL. Interest Group in Pure and Applied Logic, 19(1), 183–216.
  • Bou, F., & Rivieccio, U. (2013). Bilattices with implications. Studia Logica, 101(4), 651–675. https://doi.org/10.1007/s11225-013-9494-3
  • Brady, R. T. (1991). Gentzenization and decidability of some contraction-less relevant logics. Journal of Philosophical Logic, 20(1), 97–117. https://doi.org/10.1007/BF00454743
  • Brignole, D. (1969). Equational characterisation of Nelson algebra. Notre Dame Journal of Formal Logic, 10(3), 285–297. https://doi.org/10.1305/ndjfl/1093893718
  • Büchi, J., & Owens, T. (1975). Skolem rings and their varieties. In S. M. Lane & D. Siefkes (Eds.), The collected works of J. Richard Büchi (pp. 53–80). Springer.
  • Burris, S., & Sankappanavar, H. P. (1981). A course in universal algebra. Graduate Texts in Mathematics, Vol. 78. Springer-Verlag.
  • Busaniche, M., & Cignoli, R. (2009). Residuated lattices as algebraic semantics for paraconsistent Nelson's logic. Journal of Logic and Computation, 19(6), 1019–1029. https://doi.org/10.1093/logcom/exp028
  • Busaniche, M., & Cignoli, R. (2014). The subvariety of commutative residuated lattices represented by twist-products. Algebra Universalis, 71(1), 5–22. https://doi.org/10.1007/s00012-014-0265-4
  • Busaniche, M., Galatos, N., & Marcos, M. A. (2022). Twist structures and Nelson conuclei. Studia Logica, 110(4), 949–987. https://doi.org/10.1007/s11225-022-09988-z
  • Cabrer, L. M., Craig, A. P., & Priestley, H. A. (2015). Product representation for default bilattices: An application of natural duality theory. Journal of Pure and Applied Algebra, 219(7), 2962–2988. https://doi.org/10.1016/j.jpaa.2014.09.034
  • Cabrer, L. M., & Priestley, H. A. (2015). A general framework for product representations: Bilattices and beyond. Logic Journal of the IGPL. Interest Group in Pure and Applied Logic, 23(5), 816–841.
  • Cabrer, L. M., & Priestley, H. A. (2016). Natural dualities through product representations: Bilattices and beyond. Studia Logica, 104(3), 567–592. https://doi.org/10.1007/s11225-016-9651-6
  • Chang, C. C. (1958). Algebraic analysis of many valued logics. Transactions of the American Mathematical Society, 88(2), 467–490. https://doi.org/10.1090/tran/1958-088-02
  • Cignoli, R. (1986). The class of Kleene algebras satisfying an interpolation property and Nelson algebras. Algebra Universalis, 23(3), 262–292. https://doi.org/10.1007/BF01230621
  • Cignoli, R., & Esteva, F. (2009). Commutative integral bounded residuated lattices with an added involution. Annals of Pure and Applied Logic, 161(2), 150–160. https://doi.org/10.1016/j.apal.2009.05.008
  • Comer, S. D. (1993). On connections between information systems, rough sets, and algebraic logic. In C. Rauszer (Ed.), Algebraic methods in logic and computer science (pp. 117–124). volume 28 of Banach centre publications. Institute of Mathematics, Polish Academy of Sciences.
  • Comer, S. D. (1995). Perfect extensions of regular double stone algebras. Algebra Universalis, 34(1), 96–109. https://doi.org/10.1007/BF01200492
  • Cornish, W. H., & Fowler, P. R. (1977). Coproducts of De Morgan algebras. Bulletin of the Australian Mathematical Society, 16(1), 1–13. https://doi.org/10.1017/S0004972700022966
  • Cornish, W. H., & Fowler, P. R. (1979). Coproducts of Kleene algebras. Journal of the Australian Mathematical Society, 27(2), 209–220. https://doi.org/10.1017/S1446788700012131
  • da Costa, N. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15, 497–510.
  • Dai, J.-H. (2008). Rough 3-valued algebras. Information Sciences, 178(8), 1986–1996. https://doi.org/10.1016/j.ins.2007.11.011
  • Davey, B., & Priestley, H. (2002). Introduction to lattices and order (2nd ed.). Cambridge University Press.
  • Demri, S. P., & Orłowska, E. S. (2002). Incomplete information: Structure, inference, complexity. Springer.
  • Düntsch, I. (1997). A logic for rough sets. Theoretical Computer Science, 179(1-2), 427–436. https://doi.org/10.1016/S0304-3975(96)00334-9
  • Erné, M., & Joshi, V. (2015). Ideals in atomic posets. Discrete Mathematics, 338(6), 954–971. https://doi.org/10.1016/j.disc.2015.01.001
  • Esakia, L. (1974). Topological Kripke models. Soviet Mathematics Doklady, 15, 147–151.
  • Fidel, M. (1977). The decidability of the calculi Cn. Reports on Mathematical Logic, 8, 31–40.
  • Fidel, M. M. (1978). An algebraic study of a propositional system of Nelson. In Mathematical Logic. Proceedings of the First Brazilian Conference, Campinas 1977 (pp. 99–117). volume 39 of Lecture notes in pure and applied mathematics. Marcel Dekker.
  • Fidel, M. M. (1980). An algebraic study of constructive logic with strong negation. In Proceedings of the Third Brazilian Conference on Mathematical Logic, Recife 1979 (pp. 119–129). Sociedade Brasileira de Logica.
  • Font, J. M. (1997). Belnap's four-valued logic and De Morgan lattices. Logic Journal of the IGPL. Interest Group in Pure and Applied Logic, 5, 413–440.
  • Font, J. M., Rodríguez, A. J., & Torrens, A. (1984). Wajsberg algebras. Stochastica, 8, 5–31.
  • Fried, E., & Kiss, E. W. (1983). Connections between congruence-lattices and polynomial properties. Algebra Universalis, 17(1), 227–262. https://doi.org/10.1007/BF01194534
  • Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated lattices: An algebraic glimpse at substructural logics, volume 151 of Studies in logic and the foundations of mathematics. Elsevier.
  • Ganter, B. (2007). Non-symmetric indiscernibility. In Knowledge processing and data analysis (pp. 26–34). volume 6581 of Lecture notes in computer science. Springer.
  • Gehrke, M., & Walker, E. (1992). On the structure of rough sets. Bulletin of Polish Academy of Sciences, Mathematics, 40, 235–245.
  • Ghorbani, S. (2016). Hoop twist-structures. Journal of Applied Logic, 18, 1–18. https://doi.org/10.1016/j.jal.2016.05.006
  • Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., & Scott, D. S. (2003). Continuous lattices and domains. Encyclopedia of Mathematics and its Applications. Cambridge University Press.
  • Ginsberg, M. L. (1988). Multivalued logics: A uniform approach to inference in artificial intelligence. Computational Intelligence, 4(3), 265–316. https://doi.org/10.1111/coin.1988.4.issue-3
  • Grätzer, G. (1978). General lattice theory. Birkhäuser Verlag.
  • Grätzer, G., & Schmidt, E. (1958). On the generalized boolean algebra generated by a distributive lattice. Indagationes Mathematicae, 61, 547–553. https://doi.org/10.1016/S1385-7258(58)50078-X
  • Idziak, P. M., Słomczyńska, K., & Wroński, A. (2009). Fregean varieties. International Journal of Algebra and Computation, 19(05), 595–645. https://doi.org/10.1142/S0218196709005251
  • Iturrioz, L. (1998). Rough sets and three-valued structures. In E. Orlowska (Ed.), Logic at work. Essays dedicated to the memory of Helena Rasiowa (pp. 596–603). Physica-Verlag.
  • Iwiński, T. B. (1987). Algebraic approach to rough sets. Bulletin of the Polish Academy of Sciences, Mathematics, 35, 673–683.
  • Jakl, T., Jung, A., & Pultr, A. (2016). Bitopology and four-valued logic. Electronic Notes in Theoretical Computer Science, 325, 201–219. https://doi.org/10.1016/j.entcs.2016.09.039
  • Jansana, R., & Rivieccio, U. (2012). Residuated bilattices. Soft Computing, 16(3), 493–504. https://doi.org/10.1007/s00500-011-0752-x
  • Jansana, R., & Rivieccio, U. (2013). Priestley duality for N4-lattices. In Proceedings of the Eighth Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013) (pp. 223–229). volume 32 of Advances in intelligent systems research (AISR). Atlantis Press.
  • Jansana, R., & Rivieccio, U. (2014). Dualities for modal N4-lattices. Logic Journal of the IGPL. Interest Group in Pure and Applied Logic, 22(4), 608–637.
  • Järvinen, J. (2007). Lattice theory for rough sets. Transaction on Rough Sets, VI, 400–498.
  • Järvinen, J., Pagliani, P., & Radeleczki, S. (2013). Information completeness in Nelson algebras of rough sets induced by quasiorders. Studia Logica, 101(5), 1073–1092. https://doi.org/10.1007/s11225-012-9421-z
  • Järvinen, J., & Radeleczki, S. (2011). Representation of Nelson algebras by rough sets determined by quasiorders. Algebra Universalis, 66(1-2), 163–179. https://doi.org/10.1007/s00012-011-0149-9
  • Järvinen, J., & Radeleczki, S. (2014). Monteiro spaces and rough sets determined by quasiorder relations: Models for Nelson algebras. Fundamenta Informaticae, 131(2), 205–215. https://doi.org/10.3233/FI-2014-1010
  • Järvinen, J., & Radeleczki, S. (2018). Representing regular pseudocomplemented Kleene algebras by tolerance-based rough sets. Journal of the Australian Mathematical Society, 105(1), 57–78. https://doi.org/10.1017/S1446788717000283
  • Järvinen, J., & Radeleczki, S. (2021). Defining rough sets as core–support pairs of three-valued functions. International Journal of Approximate Reasoning, 135, 71–90. https://doi.org/10.1016/j.ijar.2021.05.002
  • Järvinen, J., & Radeleczki, S. (2023). Pseudo-Kleene algebras determined by rough sets. International Journal of Approximate Reasoning, 161, 108991. https://doi.org/10.1016/j.ijar.2023.108991
  • Järvinen, J., Radeleczki, S., & Veres, L. (2009). Rough sets determined by quasiorders. Order, 26(4), 337–355. https://doi.org/10.1007/s11083-009-9130-z
  • Jónsson, B. (1995). Congruence distributive varieties. Mathematica Japonica, 42, 353–401.
  • Jung, A., & Rivieccio, U. (2012). Priestley duality for bilattices. Studia Logica, 100(1-2), 223–252. https://doi.org/10.1007/s11225-012-9376-0
  • Kamide, N., & Wansing, H. (2012). Proof theory of Nelson's paraconsistent logic: A uniform perspective. Theoretical Computer Science, 415, 1–38. https://doi.org/10.1016/j.tcs.2011.11.001
  • Katriňák, T. (1973). The structure of distributive double p-algebras. Regularity and congruences. AlgeU, 3, 238–246.
  • Katriňák, T. (1974). Construction of regular double p-algebras. Bulletin de la Société Royale des Sciences de Liège, 43, 238–246.
  • Köhler, P., & Pigozzi, D. (1980). Varieties with equationally definable principal congruences. Algebra Universalis, 11(1), 213–219. https://doi.org/10.1007/BF02483100
  • Kortelainen, J. (1994). On relationship between modified sets, topological spaces and rough sets. Fuzzy Sets and Systems, 61(1), 91–95. https://doi.org/10.1016/0165-0114(94)90288-7
  • Kumar, A., & Banerjee, M. (2012). Definable and rough sets in covering-based approximation spaces. In RSKT 2012 (pp. 488–495). volume 7414 of Lecture notes in computer science. Springer.
  • Kumar, A., & Banerjee, M. (2015). Algebras of definable and rough sets in quasi order-based approximation spaces. Fundamenta Informaticae, 141(1), 37–55. https://doi.org/10.3233/FI-2015-1262
  • Kumar, A., & Banerjee, M. (2017). A semantic analysis of Stone and dual Stone negations with regularity. In S. Ghosh & S. Prasad (Eds.), Logic and its applications (pp. 139–153). Springer.
  • López-Escobar, E. G. K. (1972). Refutability and elementary number theory. Indagationes Mathematicae (Proceedings), 75(4), 362–374. https://doi.org/10.1016/1385-7258(72)90053-4
  • Łukasiewicz, J. (1970). Philosophical remarks on many-valued systems of propositional logic. In L. Borkowski (Ed.), Selected Works of Jan Łukasiewicz (pp. 153–178). Studies in logic and the foundation of mathematics. North-Holland Publishing Company.
  • Miglioli, P., Moscato, U., Ornaghi, M., & Usberti, G. (1989). A constructivism based on classical truth. Notre Dame Journal of Formal Logic, 30(4), 67–90. https://doi.org/10.1305/ndjfl/1093635238
  • Mobasher, B., Pigozzi, D., Slutzki, G., & Voutsadakis, G. (2000). A duality theory for bilattices. Algebra Universalis, 43(2-3), 109–125. https://doi.org/10.1007/s000120050149
  • Moisil, G. C. (1965). Les logiques non-chrysipiennes et leurs applications. Acta Philosophica Fennica, 16, 137–152. Proceedings of a colloquium on Modal and many-valued logics, Helsinki, 23–26 August, 1962.
  • Monteiro, A. (1963). Construction des algèbres de Nelson finies. Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, 11, 359–362.
  • Monteiro, A. (1963). Sur la définition des algèbres de Łukasiewicz trivalentes. Bulletin Mathématique de la Société Scientifique Mathématique Physique R. P. Roumanie, 7, 3–12.
  • Monteiro, A. (1980). Sur les algèbres de Heyting symétriques. Portugaliae Mathematica, 39(1-4), 1–237.
  • Mundici, D. (1986). MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Mathematica Japonica, 31, 889–894.
  • Nagarajan, E. K. R., & Umadevi, D. (2013). Algebra of rough sets based on quasi order. Fundamenta Informaticae, 126(1), 83–101. https://doi.org/10.3233/FI-2013-872
  • Nascimento, T., Rivieccio, J., & Spinks, M. (2019). Compatibly involutive residuated lattices and the Nelson identity. Soft Computing, 23(7), 2297–2320. https://doi.org/10.1007/s00500-018-3588-9
  • Nascimento, T., & Rivieccio, U. (2021). Negation and implication in quasi-Nelson logic. Logical Investigations, 27(1), 107–123. https://doi.org/10.21146/2074-1472-2021-27-1-107-123
  • Nascimento, T., Rivieccio, U., Marcos, J., & Spinks, M. (2018). Algebraic semantics for Nelson's logic S. In L. Moss, R. de Queiroz, & M. Martinez (Eds.), Logic, Language, Information, and Computation. WoLLIC 2018 (pp. 271–288). volume 10944 of Lecture notes in computer science. Springer.
  • Nascimento, T., Rivieccio, U., Marcos, J., & Spinks, M. (2020). Nelson's logic S. Logic Journal of the IGPL. Interest Group in Pure and Applied Logic, 28(6), 1182–1206.
  • Nelson, D. (1949). Constructible falsity. Journal of Symbolic Logic, 14(1), 16–26. https://doi.org/10.2307/2268973
  • Nelson, D. (1959). Negation and separation of concepts in constructive systems. In A. Heyting (Ed.), Constructivity in mathematics (pp. 208–225). North-Holland Publishing Company.
  • Odintsov, S. P. (2003). Algebraic semantics for paraconsistent Nelson's logic. Journal of Logic and Computation, 13(4), 453–468. https://doi.org/10.1093/logcom/13.4.453
  • Odintsov, S. P. (2004). On the representation of N4-lattices. Studia Logica, 76(3), 385–405. https://doi.org/10.1023/B:STUD.0000032104.14199.08
  • Odintsov, S. P. (2005). The class of extensions of Nelson's paraconsistent logic. Studia Logica, 80(2-3), 291–320. https://doi.org/10.1007/s11225-005-8472-9
  • Odintsov, S. P. (2006). Transfer theorems for extensions of the paraconsistent Nelson logic. Algebra and Logic, 45(4), 232–247. https://doi.org/10.1007/s10469-006-0021-8
  • Odintsov, S. P. (2007). Constructive negations and paraconsistency [PhD thesis]. Sobolev Institute of Mathematics, Russian Federation.
  • Odintsov, S. P. (2008). Constructive negations and paraconsistency. Trends in Logic. Studia Logica Library, Vol. 26. Springer.
  • Odintsov, S. P. (2010). Priestley duality for paraconsistent Nelson's logic. Studia Logica, 96(1), 65–93. https://doi.org/10.1007/s11225-010-9274-2
  • Ono, H., & Rivieccio, U. (2014). Modal twist-structures over residuated lattices. Logic Journal of the IGPL. Interest Group in Pure and Applied Logic, 22(3), 440–457.
  • Pagliani, P. (1990). Remarks on special lattices and related constructive logics with strong negation. Notre Dame Journal of Formal Logic, 31(4), 515–528. https://doi.org/10.1305/ndjfl/1093635588
  • Pagliani, P. (1996). Rough sets and Nelson algebras. Fundamenta Informaticae, 27(2,3), 205–219. https://doi.org/10.3233/FI-1996-272308
  • Panicker, G., & Banerjee, M. (2019). Rough sets and the algebra of conditional logic. In T. Mihálydeák, F. Min, G. Wang, M. Banerjee, I. Düntsch, & Z. Suraj (Eds.), Rough sets (pp. 28–39). Springer.
  • Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11(5), 341–356. https://doi.org/10.1007/BF01001956
  • Pomykała, J., & Pomykała, J. A. (1988). The stone algebra of rough sets. Bulletin of Polish Academy of Sciences. Mathematics, 36, 495–512.
  • Priestley, H. A. (1970). Representation of distributive lattices by means of ordered stone spaces. Bulletin of the London Mathematical Society, 2(2), 186–190. https://doi.org/10.1112/blms/2.2.186
  • Priestley, H. A. (1984). Ordered sets and duality for distributive lattices. In M. Pouzet & D. Richard (Eds.), Orders: Descriptions and roles (pp. 39–60). volume 23 of Annals of discrete mathematics. North-Holland.
  • Pynko, A. P. (1999). Definitional equivalence and algebraizability of generalised logical systems. Annals of Pure and Applied Logic, 98(1-3), 1–68. https://doi.org/10.1016/S0168-0072(98)00058-X
  • Pynko, A. P. (1999). Functional completeness and axiomatizability within Belnap's four-valued logic and its expansions. Journal of Applied Non-classical Logics, 9(1), 61–105. https://doi.org/10.1080/11663081.1999.10510958
  • Qiao, Q. (2012). Topological structure of rough sets in reflexive and transitive relations. In 2012 5th International Conference on BioMedical Engineering and Informatics (pp. 1585–1589). IEEE. https://doi.org/10.1109/BMEI.2012.6513083
  • Rasiowa, H. (1974). An algebraic approach to non-classical logics. Studies in Logic and the Foundations of Mathematics, Vol. 78. North-Holland Publishing Company.
  • Rivieccio, U. (2011). Paraconsistent modal logics. Electronic Notes in Theoretical Computer Science, 278, 173–186. https://doi.org/10.1016/j.entcs.2011.10.014
  • Rivieccio, U. (2014). Implicative twist-structures. Algebra Universalis, 71(2), 155–186. https://doi.org/10.1007/s00012-014-0272-5
  • Rivieccio, U. (2020). Fragments of quasi-Nelson: Two negations. Journal of Applied Logic, 7, 499–559.
  • Rivieccio, U. (2020). Representation of De Morgan and (semi-)Kleene lattices. Soft Computing, 24(12), 8685–8716. https://doi.org/10.1007/s00500-020-04885-w
  • Rivieccio, U. (2021). Fragments of quasi-Nelson: The algebraizable core. Logic Journal of the IGPL. Interest Group in Pure and Applied Logic, 30(5), 807–839.
  • Rivieccio, U., Bou, F., & Jansana, R. (2011). Varieties of interlaced bilattices. Algebra Universalis, 66(1-2), 115–141. https://doi.org/10.1007/s00012-011-0151-2
  • Rivieccio, U., Flaminio, T., & Nascimento, T. (2020). On the representation of (weak) nilpotent minimum algebras. In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1–8). IEEE.
  • Rivieccio, U., & Jansana, R. (2021). Quasi-Nelson algebras and fragments. Mathematical Structures in Computer Science, 31(3), 257–285. https://doi.org/10.1017/S0960129521000049
  • Rivieccio, U., & Jung, A. (2021). A duality for two-sorted lattices. Soft Computing, 25(2), 851–868. https://doi.org/10.1007/s00500-020-05482-7
  • Rivieccio, U., Jung, A., & Jansana, R. (2017). Four-valued modal logic: Kripke semantics and duality. Journal of Logic and Computation, 27(1), 155–199. https://doi.org/10.1093/logcom/exv038
  • Rivieccio, U., & Spinks, M. (2019). Quasi-Nelson algebras. Electronic Notes in Theoretical Computer Science, 344, 169–188. https://doi.org/10.1016/j.entcs.2019.07.011
  • Rivieccio, U., & Spinks, M. (2021). Quasi-Nelson; or, non-involutive Nelson algebras. In Algebraic perspectives on substructural logics (pp. 133–168). Springer.
  • Routley, R. (1974). Semantical analyses of propositional systems of Fitch and Nelson. Studia Logica, 33(3), 283–298. https://doi.org/10.1007/BF02123283
  • Sendlewski, A. (1984). Topological duality for Nelson algebras and its applications. Bulletin of the Section of Logic, Polish Academy of Sciences, 13, 215–221.
  • Sendlewski, A. (1990). Nelson algebras through heyting ones: I. Studia Logica, 49(1), 105–126. https://doi.org/10.1007/BF00401557
  • Spinks, M., & Veroff, R. (2008a). Constructive logic with strong negation is a substructural logic. I. Studia Logica, 88(3), 325–348. https://doi.org/10.1007/s11225-008-9113-x
  • Spinks, M., & Veroff, R. (2008b). Constructive logic with strong negation is a substructural logic. II. Studia Logica, 89(3), 401–425. https://doi.org/10.1007/s11225-008-9138-1
  • Spinks, M., & Veroff, R. (2018). Paraconsistent constructive logic with strong negation as a contraction-free relevant logic. In J. Czelakowski (Ed.), Don Pigozzi on abstract algebraic logic, universal algebra, and computer science (pp. 323–379). volume 16 of Outstanding contributions to logic. Springer International Publishing AG.
  • Stone, A. H. (1968). On partitioning ordered sets into cofinal subsets. Mathematika, 15(2), 217–222. https://doi.org/10.1112/mtk.v15.2
  • Tanaka, S. (1975). On ∧-commutative algebras. Mathematics Seminar Notes, Kobe University, 3, 59–64.
  • Umadevi, D. (2015). On the completion of rough sets system determined by arbitrary binary relations. Fundamenta Informaticae, 137(3), 413–424. https://doi.org/10.3233/FI-2015-1188
  • Vakarelov, D. (1977). Notes on N-lattices and constructive logic with strong negation. Studia Logica, 36(1-2), 109–125. https://doi.org/10.1007/BF02121118
  • Vakarelov, D. (2006). Non-classical negation in the works of Helena Rasiowa and their impact on the theory of negation. Studia Logica, 84(1), 105–127. https://doi.org/10.1007/s11225-006-9004-y
  • Varlet, J. (1972). A regular variety of type 〈2,2,1,1,0,0〉. Algebra Universalis, 2(1), 218–223. https://doi.org/10.1007/BF02945029
  • Wansing, H. (1995). Semantics-based nonmonotonic inference. Notre Dame Journal of Formal Logic, 36(1), 44–54. https://doi.org/10.1305/ndjfl/1040308828
  • Werner, H. (1978). Discriminator-Algebras. Number 6 in Studien zur Algebra und ihre Anwendungen. Akademie-Verlag.
  • Wolski, M. (2006). Complete orders, categories and lattices of approximations. Fundamenta Informaticae, 72, 421–435.
  • Yao, Y., & Yao, B. (2012). Covering based rough set approximations. Information Sciences, 200, 91–107. https://doi.org/10.1016/j.ins.2012.02.065

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.