285
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Effects of recent fire on soil conditions and nutrient use of a native and an invasive grass in the Brazilian savanna

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 359-370 | Received 13 Apr 2019, Accepted 27 Apr 2019, Published online: 26 May 2019

References

  • Amaral EJ 2017. Variação de atributos foliares em espécies graminóides de Mata de Galeria e cerrado sensu stricto [Dissertação de Mestrado]. Brasília (DF): Universidade de Brasília; p. 40.
  • Amorim D, Zaine J, Rodrigues F. 2017. Avaliação de suscetibilidade à erosão e movimentação gravitacional de massa no Parque Estadual do Juquery, Franco da Rocha (SP). Geologia USP. Série Científica. 17(2):3–21. doi:10.11606/issn.2316-9095.v17-350.
  • Andrews SM. 1986. The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ. 9:511–519.
  • Awotoye OO, Ogunkunle CO, Adeniyi AA. 2011. Assessment of soil quality under various land use practices in a humid agro-ecological zone of Nigeria. Afr J Plant Sci. 5:565–569.
  • Baitello JB, Aguiar OT, Pastore JA, Arzolla FARDP. 2013. Parque Estadual do Juquery: refúgio de Cerrado no Domínio Atlântico. Instituto Florestal. 50:1–46.
  • Bieleski RL, Turner NA. 1966. Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Anal Biochem. 17:278–293.
  • Bird RB, Bird DW, Codding BF, Parker CH, Jones JH. 2008. The “fire stick farming” hypothesis: Australian aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. PNAS. 105:14796–14801.
  • Bogdan AV. 1977. Tropical pasture and fodder plants (grasses and legumes). Tropical agriculture series. London; New York : Longman; p. 475.
  • Boring LR, Hendricks JJ, Wilson CA, Mitchell RJ. 2004. Season of burn and nutrient losses in a longleaf pine ecosystem. Int J Wildland Fire. 13:443–453.
  • Brown JK, Smith JK 2000. Wildland fire in ecosystems: effects of fire on flora. vol. 2. Ogden (UT): U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Gen. Tech. Rep. RMRS-GTR-42; p. 257.
  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamente MMC, Miralles-Wilhelm F. 2006. Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant Cell Environ. 29:2153–2167.
  • Bustamante MMC, Medina E, Asner GP, Nardoto GB, Garcia-Montiel DC. 2006. Nitrogen cycling in tropical and temperate savannas. Biogeochemistry. 79:209–237.
  • Caon L, Vallejo VR, Ritsema CJ, Geissen V. 2014. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Sci Rev. 139:47–58.
  • Carelli ML, Fahal JI. 2006. Partitioning of nitrate reductase activity in Coffea arabica L. and its relation to carbon assimilation under different irradiance regimes. Braz J Plant Physiol. 18(3):397–406. doi:10.1590/S1677-04202006000300006.
  • Casals P, Romanyà J, Vallejo VR. 2005. Short-term nitrogen fixation by legume seedlings and resprouts after fire in Mediterranean old-fields. Biogeochemistry. 76:477–501.
  • Cataldo D, Haaron M, Scharader LE, Youngs VL. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plan. 6(1):71–80.
  • Catão ECP, Thion C, Kruger RH, Prosser JI. 2017. Ammonia oxidisers in a non-nitrifying Brazilian savanna soil. FEMS Microbiol Ecol. 93(11):1–8.
  • Certini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia. 143(1):1–10.
  • Conrad CE, Poulton CE. 1996. Effect of a wildfire on Idaho fescue and bluebunch wheatgrass. J Range Manage. 19:138–141.
  • Coutinho LM. 1990. Fire in the ecology of Brazilian Cerrado. In: Goldamer JG, editor. Fire in the tropical biota—ecosystem processes and global challenges. Berlin: Springer-Verlag; p. 81–105.
  • Covington WW, Sackett SS. 1992. Soil mineral nitrogen changes following prescribed burning in ponderosa pine. For Ecol Manag. 54:175–191.
  • Cruvinel EBF, Bustamante MMC, Kozovits AR, Zepp RG. 2011. Soil emissions of NO, N2O and CO2 from croplands in the savanna region of central Brazil. Agr Ecosyst Environ. 144(1):29–40.
  • Damasceno G, Souza L, Pivello VR, Gorgone-Barbosa E, Giroldo PZ, Fidelis A. 2018. Impact of invasive grasses on Cerrado under natural regeneration. Biol Invasions. 20:3621–3629.
  • Dannenmann ME, Díaz‐Pinés B, Kitzler K, Karhu J, Tejedor P, Ambus A, Parra L, Sánchez‐Martin V, Resco DA, Ramírez L, et al. 2018. Postfire nitrogen balance of Mediterranean shrublands: direct combustion losses versus gaseous and leaching losses from the postfire soil mineral nitrogen flush. Glob Change Biol. 24(10):4505–4520.
  • DeBano LF, Conrad CE. 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology. 59:489–497.
  • Delwiche J. 2010. After the fire, follow the nitrogen. Joint Fire Sci Program Briefs. 92:1–6.
  • Demeyer A, Nkana JV, Verloo M. 2001. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource Technol. 77:287–295.
  • Diouf A, Barbier N, Lykke AM, Couteron P, Deblauwe V, Mahamane A, Saadou M, Bogaert J. 2012. Relationships between fire history, edaphic factors and woody vegetation structure and composition in a semi-arid savanna landscape (Niger, West Africa). Appl Veg Sci. 15(4):488–500.
  • Ekanade O. 1991. The nature of soil properties under mature forest and plantations of fruiting and exotic trees in the Tropical Rainforest fringes of Southwestern Nigeria. J World For Res Manag. 5:101–114.
  • Eugene M, Lloret F. 2004. Fire recurrence effects on the structure and composition of Mediterranean Pinus halepensis communities in Catalonia (northeast Iberian Peninsula). Ecoscience. 11:455–462.
  • Faridullah E, Malik N, Fareed I, Irshad M. 2017. Reducing the leachability of nitrate, phosphorus and heavy metals from soil using waste material. Braz J Chem Eng. 34(3):715–726. doi:10.1590/0104-6632.20170343s20150617.
  • Feliciano CD 2016. Contribuição à sistemática de Paspaleae (Poaceae, Panicoideae): filogenia de Axonopus P. Beauv. e estudo taxonômico das espécies ocorrentes no Brasil; revisão das espécies de Paspalum L. do clado Pectinata. [Tese de doutorado]. Campinas: Universidade Estadual de Campinas; p. 427
  • Ficken CD, Wright JP. 2017. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions. PLoS One. 12(10):e0186292.
  • Gomes L, Maracahipes L, Reis SM, Marimon BS, Marimon-Junior BH, Lenza E. 2016. Dynamics of the woody vegetation of two areas of Cerrado sensu stricto located on different substrates. Rodriguésia, 67(4):859–870. doi:10.1590/2175–7860201667401
  • Gorgone-Barbosa E, Pivello VR, Bautista S, Zupo TM, Rissi MN, Fidelis A. 2015. How can an invasive grass affect fire behavior in a tropical savanna? A community and individual plant level approach. Biological Invasions 17:423–431. doi:10.1007/s10530-014-0740-z
  • Grogan P, Bruns TD, Chapin III FS. 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia. 122:537–544.
  • Hecht SB. 1993. The logic of livestock and deforestation in Amazonia. BioScience. 43(10):687–695.
  • Huotari N, Tillman-Sutela E, Moilanen M, Laiho R. 2015. Recycling of ash – for the good of the environment? Forest Ecol Manag. 348:226–240.
  • Jordan N, Aldrich-Wolfe L, Huerd S, Larson D, Muehlbauer G. 2012. Soil–occupancy effects of invasive and native grassland plant species on composition and diversity of mycorrhizal associations. Invas Plant Sci Mana. 5(4):494–505. doi:10.1614/IPSM-D-12-00014.1.
  • Karltun E, Saarsalmi A, Ingerslev M, Mandre M, Andersson S, Gaitnieks T. 2008. Wood ash recycling – possibilities and risks. In: Röser D, Asikainen A, Raulund-Rasmussen K, Stupak I, editors. Sustainable use of forest biomass for energy. Dordrecht: Springer; p. 79–108.
  • Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW. 2012. Fire in Mediterranean ecosystems. Ecology, evolution and management. New York (USA): Cambridge University Press.
  • Kim JM, Roh A-S, Choi S-C, Kim E-J, Choi M-T, Ahn B-K. 2016. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J Microbiol. 54:838–845.
  • Kolb RM, Pilon NAL, Durigan G. 2016. Factors influencing seed germination in Cerrado grasses. Acta Bot Bras. 30(1):87–92. doi:10.1590/0102-33062015abb0199.
  • Kowaljow E, Morales MS, Whitworth‐Hulse JI, Zeballos SR, Giorgis MA, Catón MR, Gurvich DE. 2019. A 55‐year‐old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degrad Dev. 30(3):266–277. doi:10.1002/ldr.3219.
  • Lavoie M, Starr G, Mack MC, Martin TA, Gholz HL. 2010. Effects of a prescribed fire on understory vegetation, carbon pools, and soil nutrients in a longleaf pine-slash pine forest in Florida. Nat Area J. 30:82–94.
  • Lenza E, Abadia AC, Menegat H, Lúcio NW, Maracahipes-Santos L, Mews HA, Santos JO, Martins J. 2017. Does fire determine distinct floristic composition of two Cerrado savanna communities on different substrates? Acta Bot Bras. 31(2):250–259. doi:10.1590/0102-33062016abb0198.
  • Liu N, Wu S, Guo Q, Wang J, Cao C, Wang J. 2018. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments. Sci Total Environ. 637–638:1026–1034.
  • Machado VM, Santos JB, Pereira IM, Lara RO, Cabral CM, Amaral CS. 2013. Avaliação do banco de sementes de uma área em processo de recuperação em cerrado campestre. Planta Daninha. 31(2):303–312. doi:10.1590/S0100-83582013000200007.
  • Mayor A, Valdecantos A, Vallejo VR, Keizer JJ, Bloem J, Baeza J, de Ruiter PC. 2016. Fire‐induced pine woodland to shrubland transitions in Southern Europe may promote shifts in soil fertility. Sci Total Environ. 573:1232–1241.
  • Moore NA, Camac JS, Morgan JW. 2019. Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses. New Phytologist. 221:1424–1433. doi:10.1111/nph.15480
  • Nakamura T, Miranda CH, Ohwaki Y, Valéio JR, Kim Y, Macedo MC. 2005. Characterization of nitrogen utilization by Brachiaria grasses in Brazilian savannas (Cerrados). Soil Sci Plant Nutr. 51:973–979. doi: 10.1111/j.1747-0765.2005.tb00136.x
  • Neary DG, Ryan KC, DeBano LF 2005. Wildland fire in ecosystems: effects of fire on soils and water. vol. 4. Ogden (United States): U.S. Dept of Agriculture, Forest Service, Rocky Mountain Research Station. Gen. Tech. Rep. RMRS-GTR-42; p. 250.
  • Nunes CA, Beiroz W, da Silva PG, Braga RF, Fernandes GW, Neves FD. 2019. Fire? They don't give a dung! The resilience of dung beetles to fire in a tropical savanna. Ecol. Entomolo. 44:315–323. doi:10.1111/een.12705
  • Oliveira-Filho EC, Brito DQ, Dias ZMB, Guarieiro M, Carvalho EL, Fascineli ML, Niva CC, Grisolia CK. 2018. Effects of ashes from a Brazilian savanna wildfire on water, soil and biota: an ecotoxicological approach. Sci Total Environ. 618:101–111.
  • Oliveras I, Meirelles ST, Hirakuri VL, Freitas CR, Miranda HS., Pivello VR. 2012. Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. Intl J Wildland Fire. 22:368–380. https://doi.org/10.1071/WF10136
  • Oyedeji S, Onuche FJ, Animasaun DA, Ogunkunle CO, Agboola OO, Isichei AO. 2016. Short-term effects of early-season fire on herbaceous composition, dry matter production and soil fertility in Guinea savanna, Nigeria. Arch Biol Sci. 68(1):7–16.
  • Paro SP 2013. Influência de fatores abióticos na diversidade de espécies do estrato herbáceo-subarbustivo em Cerrado, FLONA de Paraopeba, MG [Dissertação de mestrado]. Viçosa (MG): Universidade Federal de Viçosa; 85
  • Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B, Fidelis A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytol. 217:1435–1448.
  • Pausas JG, Ross AB, David AK, Keeley JE. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology. 85(4):1085–1100.
  • Pereira-Silva EFL 2008. Estratégias ecofisiológicas no uso de nitrogênio em espécies arbóreas de floresta ombrófila densa submontana e estacional semidecidual, SP [Tese de Doutorado]. Campinas: Universidade Estadual de Campinas; p. 208.
  • Pereira-Silva EFL, Casals P, Sodek L, Delitti WBC, Vallejo RM. 2019. Post-fire nitrogen uptake and allocation by two resprouting herbaceous species with contrasting belowground traits. Environ Exp Bot. 159:157–167.
  • Pereira-Silva EFL, Hardt E, Fernandes AO. 2012. The soil-plant relationship of nitrogen use in three tropical tree species. Web Ecol. 12:57–64.
  • Pereira-Silva EFL, Hardt E, Joly CA, Aidar MPM. 2011a. Sucessão ecológica e o uso de nitrogênio em florestas tropicais. Interciência e Sociedade. 1(1):149–159.
  • Pereira-Silva EFL, Pires JSR, Hardt E, Dos Santos JE. 2011b. Avaliação da qualidade da água em microbacias hidrográficas de uma Unidade de Conservação do Nordeste do estado de São Paulo – brasil. Rev Bras Biol. 9:371–381.
  • Pereira-Silva EFL, Santos JE, Hardt E, Aidar MPM. 2006. Atividade de redutase do nitrato e conteúdo de nitrogênio em folhas de espécies lenhosas de um cerradão na Estação Ecológica de Jataí, Luís Antônio SP. In: Dos Santos JE, Pires JSR, editors. Estudos integrados em ecossistemas. Estação Ecológica de Jataí. vol. 3. São Carlos: Editora Rima; p. 65-79.
  • Pinto AS, Bustamante MMC, Kisselle K, Burke R, Zepp R, Viana LT, Varella RF, Molina M. 2002. Soil emissions of N2O, NO and CO2 in Brazilian savannas: effects of vegetation type, seasonality, and prescribe fire. J Geophys Res. 107(D20):8089.
  • Pivello VR. 2006. Invasões Biológicas no Cerrado Brasileiro: efeitos da Introdução de Espécies Exóticas sobre a Biodiversidade [Internet]. Available from: http://www.ecologia.info/cerrado.htm
  • Pivello VR, Oliveras I, Miranda HS, Haridasan M, Sato MN, Meirelles ST. 2010. Effect of fires on soil nutrient availability in an open savanna in Central Brazil. Plant Soil. 337(1–2):111–123.
  • Purcell KL, Stephens SL 2005. Natural and anthropogenic fire regimes, vegetation effects, and potential impacts on the Avifauna of California Oak woodlands. USDA Forest Service Gen. Ogden: United States Department of Agriculture, Forest Service, Rocky Mountain Research Station. Tech. Rep. PSW-GTR-191, 1100–1103
  • Ramos  DM. 2015. Ecologia e funções adaptativas da dormência em sementes de gramíneas campestres brasileiras. [Tese de Doutorado]. Brasília: Universidade de Brasília; p. 106
  • Reyes O, Kaal J, Arán D, Gago R, Bernal J, García-Duro J, Basanta M. 2015. The effects of ash and black carbon (biochar) on germination of different tree species. Fire Ecol. 11(1):119–133.
  • Rheinheimer DS, Santos JCP, Fernandes VBB, Mafra AL, Almeida JA. 2003. Modificações nos atributos químicos de solo sob campo nativo submetido à queima. Ciênc Rural. 33:49–55. doi:10.1590/S0103-84782003000100008.
  • Sareer O, Bernstein N, Ahmad S, Umar S. 2016. Genetic, developmental and temporal variability in nitrate accumulation and nitrate reductase activity in medicinal herb Andrographis paniculata. Pedosphere. 26(6):839–847.
  • Schimann H, Ponton S, Hättenschwiler S, Ferry B, Lensi R, Domenach AM, Roggy JC. 2008. Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundances and microbial activities. Soil Biol. Biogeochem. 40, 487–494. doi:10.1016/j.soilbio.2007.09.011
  • Schmidt S, Stewart GR. 1998. Evolution and ecology of plan mineral nutrition. In: Press MC, Scholes JD, Barker MG, editors. Physiological plant ecology. London: Blackwell; p. 91–114.
  • Scholes RJ, Walker BH. 1993. An African savanna: synthesis of the Nylsvley study. Cambridge: Cambridge University Press.
  • Serrão EAD, Simão Neto M. 1971. Informações sobre duas espécies de gramíneas forrageiras do gênero Brachiaria na Amazônia: B. decumbens Stapf e B. ruziziensis Germain et Evrard. Belém: Instituto de Pesquisa e Experimentação Agropecuária do Norte; p. 31.
  • Simpson KJ, Ripley BS, Christin P, Belcher CM, Lehmann CE, Thomas GH, Osborne CP. 2016. Determinants of flammability in savanna grass species. J Ecol. 104:138–148.
  • Smirnoff N, Tood P, Stewart GR. 1984. The occurrence of nitrate reduction in the leaves of woody plants. Ann Bot. 54:363–374.
  • Smit IPJ, Asner GP, Govender N, Kennedy-Bowdoin T, Knapp DE, Jacobson J. 2010. Effects of fire on woody vegetation structure in African savanna. Ecol Appl. 20:1865–1875.
  • Souchie FF, Pinto JRR, Lenza E, Gomes L, Maracahipes-Santos L, Silvério DV. 2017. Post-fire resprouting strategies of woody vegetation in the Brazilian savanna. Acta Bot Bras. 31(2):260–266. doi:10.1590/0102-33062016abb0376.
  • Stewart GR. 1986. Localization of nitrate reduction in ferns and its relationship to environment and physiological characteristics. New Phytol. 104:373–384.
  • Stewart GR, Pate JS, Unkovich M. 1993. Characteristics of inorganic nitrogen assimilation of plants in fire-prone Mediterranean type vegetation. Plant Cell Environ. 16:351–363.
  • Taiz L, Zeiger E, Møler IM, Murphy A. 2017. Fisiologia e Desenvolvimento Vegetal. 6th ed. Artmed Publisher; p. 858.
  • Unger YL, Fernandez IJ. 1990. The short-term effects of wood-ash amendment on forest soils. Water Air Soil Poll. 49:299–314.
  • Vandegehuchte ML, de la Peña E, Bonte D. 2010. Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics. PLoS One. 5(9):e12937.
  • Weber A, Karsisto M, Lepanen R, Sundman V, Skujins J. 1985. Microbial activities in a histosol: effects of wood ash and NPK fertilizers. Soil Biol Biochem. 17:291–293.
  • Yildiz O, Esen D, Sarginci M, Toprak B. 2010. Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia Ten) ecosystems. J Environ Biol. 31(1–2):11–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.