261
Views
5
CrossRef citations to date
0
Altmetric
Articles

Elevated concentrations of CO2 and nitrogen alter DOC release and soil phenolic content in wetland microcosms

ORCID Icon, &
Pages 119-126 | Received 24 Sep 2019, Accepted 12 Feb 2020, Published online: 20 Mar 2020

References

  • Arp W. 1991. Effects of source‐sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 14(8):869–875.
  • Arp W, Drake B. 1991. Increased photosynthetic capacity of Scirpus olneyi after 4 years of exposure to elevated CO2. Plant Cell Environ. 14(9):1003–1006.
  • Azcon-Bieto J, Gonzalez-Meler MA, Doherty W, Drake BG. 1994. Acclimation of respiratory O2 uptake in green tissues of field-grown native species after long-term exposure to elevated atmospheric CO2. Plant Physiol. 106(3):1163–1168.
  • Barnard R, Leadley PW, Lensi R, Barthes L. 2005. Plant, soil microbial and soil inorganic nitrogen responses to elevated CO2: a study in microcosms of Holcus lanatus. Acta Oecol. 27(3):171–178.
  • Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, et al. 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biol. 7(5):591–598.
  • Bergstrom AK, Jansson M. 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biol. 12(4):635–643.
  • Bryant JP, Chapin FS, Klein DR. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos. 40(3):357–368.
  • Cronk JK, Fennessy MS. 2001. Wetland plants: biology and ecology. Boca Raton, Florida: CRC press.
  • Curtis PS, Balduman LM, Drake BG, Whigham DF. 1990. Elevated atmospheric CO2 effects on belowground processes in C3 and C4 estuarine marsh communities. Ecology. 71(5):2001–2006.
  • Dakora F, Drake BG. 2000. Elevated CO2 stimulates associative N2 fixation in a C3 plant of the Chesapeake Bay wetland. Plant, Cell Environ. 23(9):943–953.
  • de Winter JCF. 2013. Using the Student’s t-test with extremely small sample sizes. Practical Assess Res Eval. 18:10.
  • Drake BG, Gonzàlez-Meler MA, Long SP. 1997. More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Biol. 48(1):609–639.
  • Drake BG, Muehe MS, Peresta G, Gonzàlez-Meler MA, Matamala R. 1995. Acclimation of photosynthesis, respiration and ecosystem carbon flux of a wetland on Chesapeake Bay, Maryland to elevated atmospheric CO2 concentration. Plant Soil. 187(2):111–118.
  • Dunnett CW. 1955. A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc. 50(272):1096–1121.
  • Ebersberger D, Niklaus PA, Kandeler E. 2003. Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biol Biochem. 35(7):965–972.
  • Fennessy MS. 2014. Wetland ecosystems and global change. In: Freedman B, editor. Global environmental change. New York: Springer; p. 255–261.
  • Freeman C, Fenner N, Ostle N, Kang H. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature. 430(6996):195–198.
  • Freund RJ, Wilson WJ. 2003. Statistical methods. 2nd ed. New York: Academic Press.
  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl. 1(2):182–195.
  • Heijmans MM, Berendse F, Arp WJ, Masselink AK, Klees H, De Visser W, Van Breemen N. 2001. Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J Ecol. 89(2):268–279.
  • Heijmans MM, Klees H, Berendse F. 2002. Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition. Oikos. 97(3):415–425.
  • Helal H, Sauerbeck D. 1984. Influence of plant roots on C and P metabolism in soil. In: Tinsley J, Darbyshire JF, editors. Biological processes and soil fertility. New York: Springer; p. 175–182.
  • Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or defend. Q Rev Biol. 67(3):283–335.
  • Hodge A, Millard P. 1998. Effect of elevated CO2 on carbon partitioning and exudate release from Plantago lanceolata seedlings. Physiol Plantarum. 103(2):280–286.
  • Hoosbeek MR, Van Breemen N, Berendse F, Grosvernier P, Vasander H, Wallén B. 2001. Limited effect of increased atmospheric CO2 concentration on ombrotrophic bog vegetation. New Phytol. 150(2):459–463.
  • Jauhiainen J, Silvola J, Tolonen K, Vasander H. 1997. Response of Sphagnum fuscum to water levels and CO2 concentration. J Bryol. 19(3):391–400.
  • Jauhiainen J, Vasander H, Silvola J. 1994. Response of Sphagnum fuscum to N deposition and increased CO2. J Bryol. 18(1):83–96.
  • Jenkinson DS, Adams D, Wild A. 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature. 351(6324):304–306.
  • Juszczuk IM, Wiktorowska A, Malusá E, Rychter AM. 2004. Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil. 267(1):41–49.
  • Kang H, Freeman C, Ashendon TW. 2001. Effects of elevated CO2 on fen peat biogeochemistry. Sci Total Environ. 279(1):45–50.
  • Kang H, Kim S-Y, Fenner N, Freeman C. 2005. Shifts of soil enzyme activities in wetlands exposed to elevated CO2. Sci Total Environ. 337(1):207–212.
  • Kang H, Kwon MJ, Kim S, Lee S, Jones TG, Johncock AC, Haraguchi A, Freeman C. 2018. Biologically driven DOC release from peatlands during recovery from acidification. Nat Commun. 9(1):3807.
  • Kao-Kniffin J, Balser TC. 2007. Elevated CO2 differentially alters belowground plant and soil microbial community structure in reed canary grass-invaded experimental wetlands. Soil Biol Biochem. 39(2):517–525.
  • Kayranli B, Scholz M, Mustafa A, Hedmark Å. 2010. Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands. 30(1):111–124.
  • Keinänen M, Julkunen-Tiitto R, Mutikainen P, Walls M, Ovaska J, Vapaavuori E. 1999. Trade‐offs in phenolic metabolism of silver birch: effects of fertilization, defoliation, and genotype. Ecology. 80(6):1970–1986.
  • Kim S-Y, Kang H-J. 2003. Effects of elevated atmospheric CO2 on wetland plants: a review. Korean J Ecol Environ. 36(4):391–402.
  • Kutzbach L, Schneider J, Sachs T, Giebels M, Nykänen H, Shurpali N, Martikainen PJ, Alm J, Wilmking M. 2007. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences. 4(6):1005–1025.
  • Langley J, Mozdzer TJ, Shepard KA, Hagerty SB, Megonigal JP. 2013. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Global Change Biol. 19(5):1495–1503.
  • Matamala R, Drake BG. 1999. The influence of atmospheric CO2 enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay. Plant Soil. 210(1):93–101.
  • McConnaughay KDM, Berntson GM, Bazzaz FA. 1993. Limitations to CO2-induced growth enhancement in pot studies. Oecologia. 94(4):550–557.
  • Megonigal JP, Schlesinger W. 1997. Enhanced CH4 emission from a wetland soil exposed to elevated CO2. Biogeochemistry. 37(1):77–88.
  • Mitchell EA, Buttler A, Grosvernier P, Rydin H, Siegenthaler A, Gobat JM. 2002. Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. J Ecol. 90(3):529–533.
  • Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H. 2013. Wetlands, carbon, and climate change. Landscape Ecol. 28(4):583–597.
  • Mitsch WJ, Gosselink JG. 2015. Wetlands. 5th ed. New Jersey: John Wiley & Sons.
  • Morrice JA, Danz NP, Regal RR, Kelly JR, Niemi GJ, Reavie ED, Hollenhorst T, Axler RP, Trebitz AS, Cotter AM, et al. 2008. Human influences on water quality in Great Lakes coastal wetlands. Environ Manage. 41(3):347–357.
  • Norby RJ. 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant Soil. 165(1):9–20.
  • Norby RJ, O’Neill E, Hood WG, Luxmoore R. 1987. Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol. 3(3):203–210.
  • Oishi AC, Palmroth S, Johnsen KH, McCarthy HR, Oren R. 2014. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux. Global Change Biol. 20(4):1146–1160.
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, et al. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.
  • Pollack C. 1990. The response of plants to temperature. J Agric Sci. 115(1):5.
  • Reich PB, Hobbie SE, Lee TD. 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature Geosci. 7(12):920.
  • Richardson CJ, Ferrell GM, Vaithiyanathan P. 1999. Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass. Ecology. 80(7):2182–2192.
  • Sánchez E, Soto J, Garcia P, López-Lefebre L, Rivero R, Ruiz J, Romero L. 2000. Phenolic and oxidative metabolism as bioindicators of nitrogen deficiency in french bean plants (Phaseolus vulgaris L. cv. Strike). Plant Biol. 2(03):272–277.
  • Schimel D, Stephens BB, Fisher JB. 2015. Effect of increasing CO2 on the terrestrial carbon cycle. P Natl Acad Sci USA. 112(2):436–441.
  • Schrope M, Chanton J, Allen L, Baker J. 1999. Effect of CO2 enrichment and elevated temperature on methane emissions from rice, Oryza sativa. Global Change Biol. 5(5):587–599.
  • Thomas RB, Strain BR. 1991. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol. 96(2):627–634.
  • van Groenigen K-J, Six J, Hungate BA, de Graaff M-A, Van Breemen N, Van Kessel C. 2006. Element interactions limit soil carbon storage. Proc Natl Acad Sci. 103(17):6571–6574.
  • Vann C, Megonigal J. 2002. Productivity responses of Acer rubrum and Taxodium distichum seedlings to elevated CO2 and flooding. Environ Pollut. 116:S31–S36.
  • Verspagen JM, Van de Waal DB, Finke JF, Visser PM, Huisman J. 2014. Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. Ecol Lett. 17(8):951–960.
  • Wang H, Richardson CJ, Ho M. 2015. Dual controls on carbon loss during drought in peatlands. Nat Clim Chang. 5(6):584.
  • Welch MJ, Watson S-A, Welsh JQ, McCormick MI, Munday PL. 2014. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nat Clim Change. 4(12):1086.
  • Wieder WR, Cleveland CC, Smith WK, Todd-Brown K. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat Geosci. 8(6):441.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.