117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of thermal regime, oxygen conditions and land use on source and pathways of carbon in lake pelagic food webs

ORCID Icon, , &
Pages 293-310 | Received 21 Dec 2021, Accepted 21 Jun 2022, Published online: 07 Jul 2022

References

  • Adams M, Guilizzoni P, Adams S. 1978. Sedimentary pigments and recent primary productivity in Northern Italian Lakes. Mem Ist Ital Idrobiol. 36:267–285.
  • Anderson NJ, Bennion H, Lotter AF. 2014. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob Change Biol. 20(9):2741–2751. doi:10.1111/gcb.12584.
  • Bastviken D, Ejlertsson J, Tranvik L. 2002. Measurement of methane oxidation in lakes: a comparison of methods. Environ Sci Technol. 36(15):3354–3361. doi:10.1021/es010311p.
  • Bastviken D, Ejlertsson J, Sundh I, Tranvik L. 2003. Methane as a source of carbon and energy for lake pelagic food webs. Ecology. 84(4):969–981. doi:10.1890/0012-9658(2003)084[0969:MAASOC]2.0.CO;2.
  • Bastviken D, Cole JJ, Pace ML, Van de Bogert MC. 2008. Fates of methane from different lake habitats: connecting whole-lake budgets and CH 4 emissions. J Geophys Res-Biogeo. 113(G2):G02024. doi:10.1029/2007JG000608.
  • Beaulieu JJ, DelSontro T, Downing JA. 2019. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat Commun. 10(1):1375. doi:10.1038/s41467-019-09100-5.
  • Belle S, Millet L, Lami A, Verneaux V, Musazzi S, Hossann C, Magny M. 2016a. Increase in benthic trophic reliance on methane in 14 French lakes during the Anthropocene. Freshwater Biol. 61(7):1105–1118. doi:10.1111/fwb.12771.
  • Belle S, Millet L, Verneaux V, Lami A, David E, Murgia L, Parent C, Musazzi S, Gauthier E, Bichet V, et al. 2016b. 20th century human pressures drive reductions in deepwater oxygen leading to losses of benthic methane-based food webs. Quaternary Sci Rev. 137:209–220. doi:10.1016/j.quascirev.2016.02.019.
  • Bogard MJ, Del Giorgio PA, Boutet L, Chaves MCG, Prairie YT, Merante A, Derry AM. 2014. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun. 5(1):5350. doi:10.1038/ncomms6350.
  • Borderelle A-L 2006. Evolution bathymétrique des signatures isotopiques en carbone des macroinvertébrés et fonctionnement trophique des lacs. Relations avec le peuplement pisciaire et les caractéristiques des bassins versants. Ph.D. dissertation. Université de Franche-Comté.
  • Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel J-P, Peyret P, Fonty G, Lehours A-C. 2011. Production and consumption of methane in freshwater lake ecosystems. Res Microbiol. 162(9):832–847. doi:10.1016/j.resmic.2011.06.004.
  • Butcher JB, Nover D, Johnson TE, Clark CM. 2015. Sensitivity of lake thermal and mixing dynamics to climate change. Clim Change. 129(1):295–305. doi:10.1007/s10584-015-1326-1.
  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl. 8(3):559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.
  • de Kluijver A, Schoon PL, Downing JA, Schouten S, Middelburg JJ. 2014. Stable carbon isotope biogeochemistry of lakes along a trophic gradient. Biogeosciences. 11(22):6265–6276. doi:10.5194/bg-11-6265-2014.
  • Degens ET. 1969. Biogeochemistry of stable carbon isotopes. In: Eglinton G, Murphy MTJ, editors. Organic geochemistry: methods and results. Berlin (Heidelberg): Springer; p. 304–329. doi:10.1007/978-3-642-87734-6_14.
  • Del Giorgio PA, France RL. 1996. Ecosystem-specific patterns in the relationship between zooplankton and POM or microplankton del13C. Limnol Oceanogr. 41(2):359–365. doi:10.4319/lo.1996.41.2.0359.
  • DeNiro MJ, Epstein S. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science. 197(4300):261–263. doi:10.1126/science.327543.
  • DeNiro MJ, Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Ac. 42(5):495–506. doi:10.1016/0016-7037(78)90199-0.
  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr. 51(5):2388–2397. doi:10.4319/lo.2006.51.5.2388.
  • Duc N, Crill P, Bastviken D. 2010. Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry. 100(1–3):185–196. doi:10.1007/s10533-010-9415-8.
  • Fang X, Stefan HG. 2009. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous U.S. under past and future climate scenarios. Limnol Oceanogr. 54(6part2):2359–2370. doi:10.4319/lo.2009.54.6_part_2.2359.
  • Fernández JE, Peeters F, Hofmann H. 2016. On the methane paradox: transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes. J Geophys Res-Biogeo. 121(10):2717–2726. doi:10.1002/2016JG003586.
  • Foley B, Jones ID, Maberly SC, Rippey B. 2012. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwater Biol. 57(2):278–289. doi:10.1111/j.1365-2427.2011.02662.x.
  • France RL. 1995. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol Oceanogr. 40(7):1310–1313. doi:10.4319/lo.1995.40.7.1310.
  • Frossard V, Verneaux V, Millet L, Jenny J-P, Arnaud F, Magny M, Perga M-E. 2014. Reconstructing long-term changes (150 years) in the carbon cycle of a clear-water lake based on the stable carbon isotope composition (δ13C) of chironomid and cladoceran subfossil remains. Freshwater Biol. 59(4):789–802. doi:10.1111/fwb.12304.
  • Fry B. 2006. Stable isotope ecology. New York (NY): Springer.
  • Golosov S, Terzhevik A, Zverev I, Kirillin G, Engelhardt C. 2012. Climate change impact on thermal and oxygen regime of shallow lakes. Tellus A. 64(1):17264. doi:10.3402/tellusa.v64i0.17264.
  • Grey J, Jones RI, Sleep D. 2001. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol Oceanogr. 46(3):505–513. doi:10.4319/lo.2001.46.3.0505.
  • Grosbois G, Mariash H, Schneider T, Rautio M. 2017. Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival. Sci Rep. 7(1):11543. doi:10.1038/s41598-017-10956-0.
  • Grosbois G, Vachon D, Del Giorgio PA, Rautio M. 2020. Efficiency of crustacean zooplankton in transferring allochthonous carbon in a boreal lake. Ecology. 101(6):e03013. doi:10.1002/ecy.3013.
  • Guilizzoni P, Bonomi G, Galanti G, Ruggiu D. 1983. Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiologia. 103(1):103–106. doi:10.1007/BF00028436.
  • Guilizzoni P, Marchetto A, Lami A, Gerli S, Musazzi S. 2011. Use of sedimentary pigments to infer past phosphorus concentration in lakes. J Paleolimnol. 45(4):433–445. doi:10.1007/s10933-010-9421-9.
  • Harrod C, Grey J. 2006. Isotopic variation complicates analysis of trophic relations within the fish community of Plußsee: a small, deep, stratifying lake. Arch Hydrobiol. 167(1):281–299. doi:10.1127/0003-9136/2006/0167-0281.
  • Hiltunen M, Peltomaa E, Brett MT, Aalto SL, Strandberg U, Oudenampsen J, Burgwal LM, Taipale SJ. 2019. Terrestrial organic matter quantity or decomposition state does not compensate for its poor nutritional quality for Daphnia. Freshwater Biol. 64(10):1769–1786. doi:10.1111/fwb.13368.
  • Huttunen JT, Alm J, Liikanen A, Juutinen S, Larmola T, Hammar T, Silvola J, Martikainen PJ. 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere. 52(3):609–621. doi:10.1016/S0045-6535(03)00243-1.
  • Jane SF, Hansen GJA, Kraemer BM, Leavitt PR, Mincer JL, North RL, Pilla RM, Stetler JT, Williamson CE, Woolway RI, et al. 2021. Widespread deoxygenation of temperate lakes. Nature. 594(7861):66–70. doi:10.1038/s41586-021-03550-y.
  • Jedrysek MO. 2005. S–O–C isotopic picture of sulphate–methane–carbonate system in freshwater lakes from Poland. A review. Environ Chem Lett. 3(3):100–112. doi:10.1007/s10311-005-0008-z.
  • Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, Silvola J, Martikainen PJ. 2009. Methane dynamics in different boreal lake types. Biogeosciences. 6(2):209–223. doi:10.5194/bg-6-209-2009.
  • Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A. 2006a. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol Oceanogr. 51(2):1195–1204. doi:10.4319/lo.2006.51.2.1195.
  • Kankaala P, Taipale S, Grey J, Sonninen E, Arvola L, Jones RI. 2006b. Experimental d13C evidence for a contribution of methane to pelagic food webs in lakes. Limnol Oceanogr. 51(6):2821–2827. doi:10.4319/lo.2006.51.6.2821.
  • Kankaala P, Taipale S, Nykänen H, Jones RI. 2007. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. J Geophys Res. 112:G02003. doi:10.1029/2006JG000336.
  • Keough JR, Sierszen ME, Hagley CA. 1996. Analysis of a Lake Superior coastal food web with stable isotope techniques. Limnol Oceanogr. 41(1):136–146. doi:10.4319/lo.1996.41.1.0136.
  • Khan H, Laas A, Marcé R, Obrador B. 2020. Major effects of alkalinity on the relationship between metabolism and dissolved inorganic carbon dynamics in lakes. Ecosystems. 23(8):1566–1580. doi:10.1007/s10021-020-00488-6.
  • Knoll LB, Vanni MJ, Renwick WH. 2003. Phytoplankton primary production and photosynthetic parameters in reservoirs along a gradient of watershed land use. Limnol Oceanogr. 48(2):608–617. doi:10.4319/lo.2003.48.2.0608.
  • Kortelainen P, Huttunen JT, Väisänen T, Mattsson T, Karjalainen P, Martikainen P. 2000. CH4, CO2 and N2O supersaturation in 12 Finnish lakes before and after ice-melt. Verh Int Ver Limnol. 27:1410–1414. doi:10.1080/03680770.1998.11901468.
  • Kortelainen P, Rantakari M, Huttunen JT, Mattsson T, Alm J, Juutinen S, Larmola T, Silvola J, Martikainen PJ. 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biol. 12(8):1554–1567. doi:10.1111/j.1365-2486.2006.01167.x.
  • Laas A, Cremona F, Meinson P, Rõõm E-I, Nõges T, Nõges P. 2016. Summer depth distribution profiles of dissolved CO2 and O2 in shallow temperate lakes reveal trophic state and lake type specific differences. Sci Total Environ. 566–567:63–75. doi:10.1016/j.scitotenv.2016.05.038.
  • Lampert W, Kinne O. 2011. Daphnia: development of a model organism in ecology and evolution. Oldendorf/Luhe (Germany): International Ecology Institute.
  • Laws EA, Popp BN, Bidigare RR, Kennicutt MC, Macko SA. 1995. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2)aq: theoretical considerations and experimental results. Geochim Cosmochim Ac. 59(6):1131–1138. doi:10.1016/0016-7037(95)00030-4.
  • Lennon JT, Faiia AM, Feng X, Cottingham KL. 2006. Relative importance of CO2 recycling and CH4 pathways in lake food webs along a dissolved organic carbon gradient. Limnol Oceanogr. 51(4):1602–1613. doi:10.4319/lo.2006.51.4.1602.
  • Magny M. 1992. Sédimentation et dynamique de comblement dans les lacs du Jura au cours des 15 derniers millénaires. ArchéoSciences. 16(1):27–49. doi:10.3406/arsci.1992.890.
  • Marcé R, Obrador B, Morguí J-A, Lluís Riera J, López P, Armengol J. 2015. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nat Geosci. 8(2):107–111. doi:10.1038/ngeo2341.
  • Masclaux H, Perga M-E, Kagami M, Desvilettes C, Bourdier G, Bec A. 2013. How pollen organic matter enters freshwater food webs. Limnol Oceanogr. 58(4):1185–1195. doi:10.4319/lo.2013.58.4.1185.
  • Matthews B, Mazumder A. 2003. Compositional and interlake variability of zooplankton affect baseline stable isotope signatures. Limnol Oceanogr. 48(5):1977–1987. doi:10.4319/lo.2003.48.5.1977.
  • McGinnis DF, Greinert J, Artemov Y, Beaubien SE, Wüest A. 2006. Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J Geophys Res-Oceans. 111(C9):C09007. doi:10.1029/2005JC003183.
  • Miettinen H, Pumpanen J, Heiskanen J, Aaltonen H, Mammarella I, Ojala A, Levula J, Rantakari M. 2015. Towards a more comprehensive understanding of lacustrine greenhouse gas dynamics — two-year measurements of concentrations and fluxes of CO2, CH4 and N2O in a typical boreal lake surrounded by managed forests. Boreal Environ Res. 20:75–89.
  • Mohamed MN, Taylor WD. 2009. Relative contribution of autochthonous and allochthonous carbon to limnetic zooplankton: a new cross-system approach. Fund Appl Limnol. 175(2):113–124. doi:10.1127/1863-9135/2009/0175-0113.
  • Morlock MA, Schilder J, van Hardenbroek M, Szidat S, Wooller MJ, Heiri O. 2017. Seasonality of cladoceran and bryozoan resting stage δ13C values and implications for their use as palaeolimnological indicators of lacustrine carbon cycle dynamics. J Paleolimnol. 57(2):141–156. doi:10.1007/s10933-016-9936-9.
  • O’Leary MH. 1988. Carbon isotopes in photosynthesis. BioScience. 38(5):328–336. doi:10.2307/1310735.
  • Parker SR, Poulson SR, Smith MG, Weyer CL, Bates KM. 2010. Temporal variability in the concentration and stable carbon isotope composition of dissolved inorganic and organic carbon in two Montana, USA rivers. Aquat Geochem. 16(1):61–84. doi:10.1007/s10498-009-9068-1.
  • Peeters F, Atamanchuk D, Tengberg A, Encinas-Fernández J, Hofmann H, Vopel KC. 2016. Lake metabolism: comparison of lake metabolic rates estimated from a diel CO2- and the common diel O2- technique. PLoS ONE. 11(12):e0168393. doi:10.1371/journal.pone.0168393.
  • Perga M-E, Kainz M, Mazunder A. 2008. Terrestrial carbon contribution to lake food webs: could the classical stable isotope approach be misleading? Can J Fish Aquat Sci. 65(12):2719. doi:10.1139/F08-176.
  • Peterson BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Annu Rev Ecol Syst. 18(1):293–320. doi:10.1146/annurev.es.18.110187.001453.
  • Pighini S, Ventura M, Miglietta F, Wohlfahrt G. 2018. Dissolved greenhouse gas concentrations in 40 lakes in the Alpine area. Aquat Sci. 80(3):32. doi:10.1007/s00027-018-0583-2.
  • Pilla RM, Williamson CE. 2021. Earlier ice breakup induces changepoint responses in duration and variability of spring mixing and summer stratification in dimictic lakes. Limnol Oceanogr. 67:S173–S183. doi:10.1002/lno.11888.
  • Praetzel LSE, Plenter N, Schilling S, Schmiedeskamp M, Broll G, Knorr K-H. 2020. Organic matter and sediment properties determine in-lake variability of sediment CO2 and CH4 production and emissions of a small and shallow lake. Biogeosciences. 17(20):5057–5078. doi:10.5194/bg-17-5057-2020.
  • R Core Team. 2019. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. URL. http://www.R-project.org/
  • Rantakari M, Kortelainen P. 2005. Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Global Change Biol. 11(8):1368–1380. doi:10.1111/j.1365-2486.2005.00982.x.
  • Raven JA. 1996. Inorganic carbon assimilation by marine biota. J Exp Mar Biol Ecol. 203(1):39–47. doi:10.1016/0022-0981(96)02568-3.
  • Rinta P, Bastviken D, van Hardenbroek M, Kankaala P, Leuenberger M, Schilder J, Stötter T, Heiri O. 2015. An inter-regional assessment of concentrations and δ13C values of methane and dissolved inorganic carbon in small European lakes. Aquat Sci. 77(4):667–680. doi:10.1007/s00027-015-0410-y.
  • Rinta P, Bastviken D, Schilder J, Van Hardenbroek M, Stötter T, Heiri O. 2016a. Higher late summer methane emission from central than Northern European lakes. J Limnol. 76:52–67. doi:10.4081/jlimnol.2016.1475.
  • Rinta P, van Hardenbroek M, Jones RI, Kankaala P, Rey F, Szidat S, Wooller MJ, Heiri O, Molinero JC. 2016b. Land use affects carbon sources to the pelagic food web in a small boreal lake. PLoS ONE. 11(8):e0159900. doi:10.1371/journal.pone.0159900.
  • Rudd J, Hamilton RD. 1975. Factors controlling rates of methane oxidation and the distribution of the methane oxidizers in a small stratified lake. Arch Hydrobiol. 75:522–538.
  • Rudd JWM, Furutani A, Flett RJ, Hamilton RD. 1976. Factors controlling methane oxidation in shield lakes: the role of nitrogen fixation and oxygen concentration1: CH4 oxidation in lakes. Limnol Oceanogr. 21(3):357–364. doi:10.4319/lo.1976.21.3.0357.
  • Rudd JWM, Hamilton RD. 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism 1. Limnol Oceanogr. 23(2):337–348. doi:10.4319/lo.1978.23.2.0337.
  • Rudd J, Taylor CD. 1980. Methane cycling in aquatic environments. Adv Aquat Microbiol. 2:77–150.
  • Schilder J, van Hardenbroek M, Bodelier P, Kirilova EP, Leuenberger M, Lotter AF, Heiri O. 2017. Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs. P Roy Soc B-Biol Sci. 284(1857):20170278. doi:10.1098/rspb.2017.0278.
  • Schubert CJ, Diem T, Eugster W. 2012. Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels, and boundary model calculations: a comparison. Envir Sci Tech. 46(8):4515–4522. doi:10.1021/es203465x.
  • Smyntek PM, Teece MA, Schulz KL, Thackeray SJ. 2007. A standard protocol for stable isotope analysis of zooplankton in aquatic food web research using mass balance correction models. Limnol Oceanogr. 52(5):2135–2146. doi:10.4319/lo.2007.52.5.2135.
  • Smyntek PM, Maberly SC, Grey J. 2012. Dissolved carbon dioxide concentration controls baseline stable carbon isotope signatures of a lake food web. Limnol Oceanogr. 57(5):1292–1302. doi:10.4319/lo.2012.57.5.1292.
  • Syväranta J, Rautio M. 2010. Zooplankton, lipids and stable isotopes: importance of seasonal, latitudinal, and taxonomic differences. Can J Fish Aquat Sci. 67(11):1721–1729. doi:10.1139/F10-091.
  • Taipale S, Kankaala P, Jones RI. 2007. Contributions of different organic carbon sources to Daphnia in the pelagic foodweb of a small polyhumic lake: results from mesocosm DI13C-additions. Ecosystems. 10(5):757–772. doi:10.1007/s10021-007-9056-5.
  • Taipale S, Kankaala P, Tiirola M, Jones RI. 2008. Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet. Ecology. 89(2):463–474. doi:10.1890/07-0702.1.
  • Taipale S, Kankaala P, Hämäläinen H, Jones RI. 2009. Seasonal shifts in the diet of lake zooplankton revealed by phospholipid fatty acid analysis. Freshwater Biol. 54(1):90–104. doi:10.1111/j.1365-2427.2008.02094.x.
  • Tang KW, McGinnis DF, Frindte K, Brüchert V, Grossart H-P. 2014. Paradox reconsidered: methane oversaturation in well-oxygenated lake waters. Limnol Oceanogr. 59(1):275–284. doi:10.4319/lo.2014.59.1.0275.
  • Templeton AS, Chu K-H, Alvarez-Cohen L, Conrad ME. 2006. Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochim Cosmochim Ac. 70(7):1739–1752. doi:10.1016/j.gca.2005.12.002.
  • Thalasso F, Sepulveda-Jauregui A, Gandois L, Martinez-Cruz K, Gerardo-Nieto O, Astorga-España MS, Teisserenc R, Lavergne C, Tananaev N, Barret M, et al. 2020. Sub-oxycline methane oxidation can fully uptake CH4 produced in sediments: case study of a lake in Siberia. Sci Rep. 10(1):3423. doi:10.1038/s41598-020-60394-8.
  • Tieszen LL, Boutton TW, Tesdahl KG, Slade NA. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia. 57(1–2):32–37. doi:10.1007/BF00379558.
  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr. 54(6part2):2298–2314. doi:10.4319/lo.2009.54.6_part_2.2298.
  • Utsumi M, Nojiri Y, Nakamura T, Nozawa T, Otsuki A, Takamura N, Watanabe M, Seki H. 1998. Dynamics of dissolved methane and methane oxidation in dimictic Lake Nojiri during winter. Limnol Oceanogr. 43(1):10–17. doi:10.4319/lo.1998.43.1.0010.
  • Vachon D, Langenegger T, Donis D, McGinnis DF. 2019. Influence of water column stratification and mixing patterns on the fate of methane produced in deep sediments of a small eutrophic lake. Limnol Oceanogr. 64(5):2114–2128. doi:10.1002/lno.11172.
  • van Hardenbroek M, Lotter AF, Bastviken D, Andersen TJ, Heiri O. 2014. Taxon-specific δ13C analysis of chitinous invertebrate remains in sediments from Strandsjön, Sweden. J Paleolimnol. 52(1–2):95–105. doi:10.1007/s10933-014-9780-8.
  • Vuorio K, Meili M, Sarvala J. 2006. Taxon-specific variation in the stable isotopic signatures (delta13C and delta15N) of lake phytoplankton. Freshwater Biol. 51(5):807–822. doi:10.1111/j.1365-2427.2006.01529.x.
  • Wachniew P, Różański K. 1997. Carbon budget of a mid-latitude, groundwater-controlled lake: isotopic evidence for the importance of dissolved inorganic carbon recycling. Geochim Cosmochim Ac. 61(12):2453–2465. doi:10.1016/S0016-7037(97)00089-6.
  • Wang B, Liu C-Q, Peng X, Wang F. 2013. Mechanisms controlling the carbon stable isotope composition of phytoplankton in karst reservoirs. J Limnol. 72(1):11. doi:10.4081/jlimnol.2013.e11.
  • Wang Q, Dore JE, McDermott TR. 2017. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake. Environ Microbiol. 19(6):2366–2378. doi:10.1111/1462-2920.13747.
  • Weiss RF. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chem. 2(3):203–215. doi:10.1016/0304-4203(74)90015-2.
  • West WE, Coloso JJ, Jones SE. 2012. Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment: methanogen response to trophic change. Freshwater Biol. 57(5):949–955. doi:10.1111/j.1365-2427.2012.02755.x.
  • Wiesenburg DA, Guinasso NL. 1979. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J Chem Eng Data. 24(4):356–360. doi:10.1021/je60083a006.
  • Winslow LA, Read JS, Hansen GJA, Hanson PC. 2015. Small lakes show muted climate change signal in deepwater temperatures. Geophys Res Lett. 42(2):355–361. doi:10.1002/2014GL062325.
  • Wooller MJ, Pohlman JW, Gaglioti BV, Langdon P, Jones M, Walter Anthony KM, Becker KW, Hinrichs K-U, Elvert M. 2012. Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years. Journal of Paleolimnology. 48(1):27–42. doi:10.1007/s10933-012-9591-8.
  • Woolway RI, Merchant CJ. 2019. Worldwide alteration of lake mixing regimes in response to climate change. Nat Geosci. 12(4):271–276. doi:10.1038/s41561-019-0322-x.
  • Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, Del Giorgio PA. 2014. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature. 507(7493):488–491. doi:10.1038/nature13164.
  • Züllig H. 1989. Role of carotenoids in lake sediments for reconstructing trophic history during the late Quaternary. J Paleolimnol. 2(1):23–40. doi:10.1007/BF00156982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.