50
Views
1
CrossRef citations to date
0
Altmetric
Articles

A fast and robust OSRAD filter for telemedicine applications

&
Pages 70-79 | Received 07 Nov 2017, Accepted 10 Aug 2018, Published online: 25 Aug 2018

References

  • Abdallah MB, Jihene M, Krissian K, et al. An automated vessel segmentation of retinal images using multiscale vesselness. 8th International Multi-Conference on Systems, Signals and Devices (SSD), Sousse, Tunisia; 2011. p. 1–6.
  • Jihene M, Azar A, Tourki R. Impact of retinal vascular tortuosity on retinal circulation. Neural Comput Appl. 2015;26(1).
  • Malek J, Torki R. Inertia-based vessel centerline extraction in retinal image. 2013 International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia; 2013.
  • Abdallah Mariem Ben, Jihene RTJEM Malek, Krissian K. Automatic estimation of the noise model in fundus images. 2013 10th International Multi-Conference on Systems, Signals & Devices (SSD), Hammamet, Tunisia; 2013. p. 1–5.
  • Krissian K, Westin CF, Kikinis R, et al.Oriented speckle reducing anisotropic diffusion. IEEE Trans Image Process. 2007;16(5):1412–1424.
  • Yu Y, Acton ST. Speckle reducing anisotropic diffusion. IEEE Trans Image Process. 2002;11(11):1260–1270.
  • Arif S, Ul-Hassan T, Hussain F, et al. Video representation by dense trajectories motion map applied to human activity recognition. Int J Comput Appl. 2018;1–11.
  • Yahi A, Messaoudi K, Toumi S, et al. Real-time hardware implementation of a speed fsbma used in h. 264/avc. Int J Comput Appl. 2015;37(3–4):134–142.
  • Valery O, Liu P, Wu JJ. A collaborative CPU–GPU approach for principal component analysis on mobile heterogeneous platforms. J Parallel Distrib Comput. 2018;120:44–61.
  • Yuan Z, Wang J, Jiang K, et al. A real-time ISAR imaging structure based on GPU and CPU heterogeneous parallel processing. 2016 IEEE 13th International Conference on Signal Processing (ICSP), IEEE; 2016. p. 1539–1544.
  • Berezsky O, Pitsun O, Dubchak L, et al. GPU-based biomedical image processing. 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), IEEE; 2018. p. 96–99.
  • Rahman Z, Pu YF, Aamir M, et al. A framework for fast automatic image cropping based on deep saliency map detection and Gaussian filter. Int J Comput Appl. 2018;1–11.
  • HosseinKhani Z, Hajabdollahi M, Karimi N, et al. Real-time impulse noise removal from MR images for radiosurgery applications. CoRR; 2017.
  • Biswas B, Sen BK. Medical image fusion using type-2 fuzzy and near-fuzzy set approach. Int J Comput Appl. 2017;1–16.
  • Zhu Z, Jiang J, Zhang X. Edge-preserving regularized filter with visual perception outlier measurement. Int J Comput Appl. 2015;37(3–4):120–126.
  • Habib W, Siddiqui AM, Touqir I. Wavelet based despeckling of multiframe optical coherence tomography data using similarity measure and anisotropic diffusion filtering. 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2013.
  • Mayer MA, Borsdorf A, Wagner M, et al. Wavelet denoising of multiframe optical coherence tomography data. Biomed Opt Express. 2012;3(3):572–589.
  • Sheybani E, Javidi G. Advanced image processing for analytics in biomedicine and bioscience. Curr Trends Biomed Eng Biosci. 2017;6(4):555692.
  • Su Y, Xu Z. Parallel implementation of wavelet-based image denoising on programmable PC-grade graphics hardware. Signal Process. 2010;90(8):2396–2411. (Special Section on Processing and Analysis of High-Dimensional Masses of Image and Signal Data).
  • Tenllado C, Setoain J, Prieto M, et al. Parallel implementation of the 2D discrete wavelet transform on graphics processing units: filter bank versus lifting. IEEE Trans Parallel Distrib Syst. 2008;19(3):299–310.
  • Tomasi C, Manduchi R. Bilateral filtering for gray and color images. Sixth International Conference on Computer Vision, 1998; 1998.
  • Chang HH, Chang YN. CUDA-based acceleration and BPN-assisted automation of bilateral filtering for brain MR image restoration. Med Phys. 2017;44(4):1420–1436.
  • Sylvain P, Frédo D. A fast approximation of the bilateral filter using a signal processing approach. Int J Comput Vision. 2009;81(1):24–52.
  • Weiss B. Fast median and bilateral filtering. ACM Trans Graph. 2006;25(3):519–526.
  • Yang Q. Recursive approximation of the bilateral filter. IEEE Trans Image Process. 2015;24(6):1919–1927.
  • Li CY, Chang HH. CUDA-based acceleration of collateral filtering in brain MR images. Eighth International Conference on Graphic and Image Processing (ICGIP 2016), Vol. 10225; International Society for Optics and Photonics; 2017. p. 1022528.
  • Sun T, Jung C, Wang L, et al. Rapid learning-based video stereolization using graphic processing unit acceleration. J Electron Imaging. 2016;25(5):053021.
  • Zhao H, Gao D, Wang M, et al. Real-time edge-aware weighted median filtering on the GPU. Comput Graph. 2016;61:11–18.
  • Maxime M, Cokelaer F. Flowing bilateral filter definition and implementations. Image Anal Stereol. 2015;34(2):101–110.
  • Mark H. Comparing GPU implementations of bilateral and anisotropic diffusion filters for 3D biomedical datasets; Berkeley, CA, USA; Ernest Orlando Lawrence Berkeley National Laboratory; 2010.
  • Kalaiselvi T, Sriramakrishnan P, Somasundaram K. Survey of using GPU CUDA programming model in medical image analysis. Inform Med Unlocked. 2017;9:133–144.
  • Morar A, Moldoveanu F, Moldoveanu A, et al. GPU accelerated 2D and 3D image processing. Federated Conference on Computer Science and Information Systems; 2017.
  • Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell. 1990;12(7):629–639.
  • Fredj AH, Malek J, Bourennane EB. Fast oriented anisotropic diffusion filter. 2016 11th International Design & Test Symposium (IDT), IEEE; 2016. p. 308–312.
  • Fredj AH, Malek J. Real time ultrasound image denoising using NVIDIA CUDA. Second International Conference on Advanced Technologies for Signal and Image Processing (ATSIP); Monastir, Tunisia; 2016. p. 136–140.
  • Ben Abdallah M, Malek J, Azar AT, et al.Adaptive noise-reducing anisotropic diffusion filter. Neural Comput Appl. 2016;27(5):1273. doi:10.1007/s00521-015-1933-9
  • Malek J, Azar AT, Nasralli B, et al. Computational analysis of blood flow in the retinal arteries and veins using fundus image. Comput Math Appl. 2015;69(2):101–116.
  • Fredj AH, Malek J. Fundus image denoising using FPGA hardware architecture. Int J Comput Appl Technol. 2016;54:1–13.
  • Zhu H, Chen Y, Gu J, et al. Implementation of 3D SRAD algorithm on CUDA. 2011 Fourth International Conference on Intelligent Networks and Intelligent Systems; November 2011. p. 97–100.
  • Santiago AF, Alberola-López C. On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans Image Process. 2006;15(9):2694–2701.
  • Jiang H, Liu J, Lu K, et al. Implementation of 3-D RDPAD algorithm on follicle images based CUDA. Lecture Notes in Computer Science, Springer; 2015. p. 177–184.
  • Nieniewski M, Zajkaczkowski P. Real-time speckle reduction in ultrasound images by means of nonlinear coherent diffusion using GPU. International Conference on Computer Vision and Graphics; Springer; 2014. p. 462–469.
  • Kuan D, Sawchuk A, Strand T, et al. Adaptive restoration of images with speckle. IEEE Trans Acoust Speech Signal Process. 1987;35(3):373–383.
  • Lee JS. Speckle analysis and smoothing of synthetic aperture radar images. Comput Graph Image Process. 1981;17(1):24–32.
  • Abdou IE, Pratt WK. Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc IEEE. 1979;67(5): 753–763.
  • Riha K, Zukal M, Hlawatsch F. Analysis of carotid artery transverse sections in long ultrasound video sequences. Ultrasound Med Biol. 2018;44(1):153–167. Available from: http://www.sciencedirect.com/science/article/pii/S0301562917312942
  • Giannarou S, Stoyanov D, Noonan D, et al. Hamlyn centre laparoscopic/endoscopic video datasets; 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.