71
Views
7
CrossRef citations to date
0
Altmetric
Articles

An intelligent multi-floor indoor positioning system for cloud-based environment

, , , , &
Pages 1170-1177 | Received 30 Sep 2019, Accepted 17 Nov 2019, Published online: 27 Nov 2019

References

  • Huang GB, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;70(16):3056–3062. doi: 10.1016/j.neucom.2007.02.009
  • Huang GB, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing. 2008;71(16):3460–3468. doi: 10.1016/j.neucom.2007.10.008
  • Huang GB, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification. IEEE Trans syst Man Cybernet B (Cybernet). 2011;42(2):513–529. doi: 10.1109/TSMCB.2011.2168604
  • Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–297.
  • Pontil M, Verri A. Support vector machines for 3D object recognition. IEEE Trans Pattern Anal Mach Intell. 1998;20(6):637–646. doi: 10.1109/34.683777
  • Cho BH, Yu H, Lee J, et al. Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels. IEEE Trans Inf Technol Biomed. 2008;12(2):247–256. doi: 10.1109/TITB.2007.902300
  • Joachims T. Text categorization with support vector machines: learning with many relevant features. Berlin: Springer; 1998; p. 137–142.
  • Suykens JA, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett. 1999;9(3):293–300. doi: 10.1023/A:1018628609742
  • Feng C, Au WSA, Valaee S, et al. Received-signal-strength-based indoor positioning using compressive sensing. IEEE Trans Mob Comput. 2012;11(12):1983–1993. doi: 10.1109/TMC.2011.216
  • Pratama AR, Hidayat R. Smartphone-based pedestrian dead reckoning as an indoor positioning system. IEEE International Conference on System Engineering and Technology. 2012; p. 1–6.
  • Au AWS, Feng C, Valaee S, et al. Indoor tracking and navigation using received signal strength and compressive sensing on a mobile device. IEEE Trans Mob Comput. 2013;12(10):2050–2062. doi: 10.1109/TMC.2012.175
  • Mo Y, Zhang Z, Meng W, et al. A spatial division clustering method and low dimensional feature extraction technique based indoor positioning system. Sensors. 2014;14(1):1850–1876. doi: 10.3390/s140101850
  • Yang Z, Wu C, Zhou Z, et al. Mobility increases localizability: a survey on wireless indoor localization using inertial sensors. ACM Comput Surv. 2015;47(3):54. doi: 10.1145/2676430
  • Arfwedson P, Berglund J. Indoor positioning system development of server side functionality. Client communication and a graphics engine, Independent thesis, Uppsala University Publications, 2015.
  • Mo Y, Zhang Z, Meng W, et al. Space division and dimensional reduction methods for indoor positioning system. Proceedings of the IEEE International Conference on Communications. 2015; p. 3263–3268.
  • Maddio S, Passafiume M, Cidronali A, et al. A distributed positioning system based on a predictive fingerprinting method enabling sub-metric precision in IEEE 802.11 networks. IEEE Trans Microw Theory Tech. 2015;63(12):4567–4580. doi: 10.1109/TMTT.2015.2496196
  • Kim H, Lee D, Oh T, et al. A probabilistic feature map-based localization system using a monocular camera. Sensors. 2015;15(9):21636–21659. doi: 10.3390/s150921636
  • Caso G, De Nardis L, Di Benedetto MG. A mixed approach to similarity metric selection in affinity propagation-based WiFi fingerprinting indoor positioning. Sensors. 2015;15(11):27692–27720. doi: 10.3390/s151127692
  • Wang X, Gao L, Mao S, et al. CSI-based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol. 2016;66(1):763–776.
  • Apetroaie Cristea M, Johnston SJ, Scott M, et al. Indoor localisation system based on low-cost commodity hardware. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, 2016. ACM; p. 13–16.
  • Potgantwar AD, Wadhai VM. Improved indoor positioning using RSS and directional antenna integrating with RFID and wireless technology. Proceedings of the Springer International Conference on ICT for Sustainable Development. 2016; p. 319–328.
  • Kuo WH, Chen YS, Cheng KT, et al. Signal strength based indoor and outdoor localization scheme in zigbee sensor networks. IAENG Int J Comput Sci. 2016;23(1):55–64.
  • Gharghan SK, Nordin R, Ismail M, et al. Accurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cycling. IEEE Sens J. 2016;16(2):529–541. doi: 10.1109/JSEN.2015.2483745
  • Correa A, Llado MB, Morell A, et al. Indoor pedestrian tracking by on-body multiple receivers. IEEE Sens J. 2016;16(8):2545–2553. doi: 10.1109/JSEN.2016.2518872
  • Al-Jarrah R, Al-Jarrah MA, Roth H. WSNs and on-board visual fuzzy serving on blimp robot for tracking purposes. Int J Comp Commun Eng. 2016;5(3):215. doi: 10.17706/IJCCE.2016.5.3.215-221
  • Malar ACJ, Kousalya G, Ma M. Markovian model based indoor location tracking for Internet of Things (IoT) applications. Cluster Comput. 2019;22(Suppl. 5):11805–11812.
  • Chen SY, Chang SF. A review of smart living space development in a cloud computing network environment. Comput Aided Des Appl. 2009;6(4):513–527. doi: 10.3722/cadaps.2009.513-527
  • Chen L, Li B, Zhao K, et al. An improved algorithm to generate a Wi-Fi fingerprint database for indoor positioning. Sensors. 2013;13(8):11085–11096. doi: 10.3390/s130811085
  • Al Delail B, Weruaga L, Zemerly MJ, et al. Indoor localization and navigation using smartphones augmented reality and inertial tracking. Proceedings of 20th IEEE International Conference on Electronics, Circuits, and Systems, 2013; p. 929–932.
  • Bi H, Gelenbe E. A cooperative emergency navigation framework using mobile cloud computing. Proceedings of Information Sciences and systems. Cham: Springer; 2014; p. 41–48.
  • Chen Y, Liu J, Jaakkola A, et al. Knowledge-based indoor positioning based on LiDAR aided multiple sensors system for UGV. Proceedings of IEEE/ION Position. Location and Navigation Symposium-PLANS. 2014; p. 109–114.
  • Fang Y, Cho YK, Zhang S, et al. Case study of BIM and cloud-enabled real-time RFID indoor localization for construction management applications. J Construct Eng Manage. 2016;142(7):05016003. doi: 10.1061/(ASCE)CO.1943-7862.0001125
  • Moon Y, Noh S, Park D, et al. Capsule: a camera-based positioning system using learning. Proceedings of 29th IEEE International System-on-Chip Conference. 2016; p. 235–240.
  • Luo J, Fan L, Li H. Indoor positioning systems based on visible light communication: state of the art. IEEE Commun Surv Tutor. 2017;19(4):2871–2893. doi: 10.1109/COMST.2017.2743228
  • Liu J, Chen Y, Liu M, et al. SELM: semi-supervised ELM with application in sparse calibrated location estimation. Neurocomputing. 2011;74(16):2566–2572. doi: 10.1016/j.neucom.2010.12.043
  • Savic V, Larsson EG. Fingerprinting-based positioning in distributed massive MIMO systems. Proceedings of the 82nd IEEE Vehicular Technology Conference (VTC2015-Fall). 2015; p. 1–5.
  • Zou H, Lu X, Jiang H, et al. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine. Sensors. 2015;15(1):1804–1824. doi: 10.3390/s150101804
  • Wu CL, Fu LC, Lian FL. WLAN location determination in e-home via support vector classification. Proc IEEE Int Conf Network Sens Control. 2004;2:1026–1031.
  • Wu ZL, Li CH, Ng KY, et al. Location estimation via support vector regression. IEEE Trans Mob Comput. 2007;6(3):311–321. doi: 10.1109/TMC.2007.42
  • Ma L, Xu Y, Wu D. A novel two-step WLAN indoor positioning method. J Comput Inform Syst. 2010;7:4627–4636.
  • Pei L, Liu J, Guinness R, et al. Using LS-SVM based motion recognition for smartphone indoor wireless positioning. Sensors. 2012;12(5):6155–6175. doi: 10.3390/s120506155
  • Wang X, Gao L, Mao S, et al. DeepFi: deep learning for indoor fingerprinting using channel state information. Proceedings of IEEE wireless communications and networking conference (WCNC). 2015; p. 1666–1671.
  • Huang GB, Ding X, Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing. 2010;74(1–3):155–163. doi: 10.1016/j.neucom.2010.02.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.