79
Views
0
CrossRef citations to date
0
Altmetric
Articles

A flexible and adaptive medium access control protocol for improving quality of service in vehicular ad-hoc networks

, &
Pages 929-938 | Received 03 Apr 2021, Accepted 27 Sep 2021, Published online: 17 Oct 2021

References

  • Sadou M, Bouallouche-Medjkoune L. Hybrid sensor and vehicular networks: a survey. Int J Veh Inf Commun Syst. 2017;3(3):204–229.
  • Jiang D, Delgrossi L. IEEE 802.11p: towards an international standard for wireless access in vehicular environments. In: VTC Spring 2008-IEEE Vehicular Technology Conference. IEEE; 2008. p. 2036–2040.
  • I. W. Group, et al. IEEE standard for wireless access in vehicular environments (WAVE)-multi-channel operation. IEEE Std. 1609.4-2016.
  • Abrougui K, Boukerche A, Pazzi RWN. Design and evaluation of context-aware and location-based service discovery protocols for vehicular networks. IEEE Trans Intell Transp Syst. 2011;12(3):717–735.
  • Mammeri S, Yazid M, Bouallouche-Medjkoune L, et al. Performance study and enhancement of multichannel access methods in the future generation VHT WLAN. Future Gener Comput Syst. 2018;79:543–557.
  • Halfaoui F, Yazid M, Bouallouche-Medjkoune L. Enhancement of the dynamic bandwidth channel access for IEEE 802.11ac WLANs. Int J Wirel Mob Comput (IJWMC). 2019;17(3):264–273.
  • Yazid M, Aïssani D, Bouallouche-Medjkoune L. Modeling and analysis of the TXOPLimit efficiency with the packet fragmentation in an IEEE 802.11e-EDCA network under noise-related losses. Wirel Pers Commun. 2017;95(2):1505–1530.
  • Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun. 2000;18(3):535–547.
  • Li X, Shu W, Li M, et al. Performance evaluation of vehicle-based mobile sensor networks for traffic monitoring. IEEE Trans Veh Technol. 2008;58(4):1647–1653.
  • Alkama L, Bouallouche-Medjkoune L, Bachiri L. Modeling and performance evaluation of the IEEE 802.15.4K CSMA/CA with priority channel access mechanism under fading channel. Wirel Pers Commun. 2020;115:527–556.
  • Rizk M, Dessouky M, El-Dolil S, et al. Fairness and throughput enhancement-based random access using fuzzy controlled backoff interval. Int J Comput Appl. 2009;31(1):58–64.
  • Babu A, Jacob L. Service differentiation schemes in IEEE 802.11 wireless LANs with variable frame size. Int J Comput Appl. 2007;29(2):187–195.
  • Wang Q, Leng S, Fu H, et al. An IEEE 802.11p-based multichannel MAC scheme with channel coordination for vehicular Ad Hoc networks. IEEE Trans Intell Transp Syst. 2011;13(2):449–458.
  • Zeadally S, Guerrero J, Contreras J. A tutorial survey on vehicle to vehicle communications. Telecommun Syst. 2020;73(3):469–489.
  • Maalej Y, Abderrahim A, Guizani M, et al. Advanced activity-aware multi-channel operations 1609. 4 in VANETs for vehicular clouds. In: 2016 IEEE Global Communications Conference (GLOBECOM). IEEE; 2016. p. 1–6.
  • Wang Y-H, Tsai C-H, Lin H-Z, et al. Interference-aware QoS multipath routing for Ad Hoc wireless networks. Int J Comput Appl. 2007;29(4):372–378.
  • Zhang W, Kong J, Nygard K, et al. Adaptive design of pervasive computing system under QoS constraints1. Int J Comput Appl. 2010;32(4):482–492.
  • Ogundoyin SO. An autonomous lightweight conditional privacy-preserving authentication scheme with provable security for vehicular Ad-Hoc networks. Int J Comput Appl. 2020;42(2):196–211.
  • Souadih R, Semchedine F. Energy-efficient coverage and connectivity of wireless sensor network in the framework of hybrid sensor and vehicular network. Int J Comput Appl. 2020;0(0):1–11. doi:10.1080/1206212X.2020.1808346.
  • Venkataramanan C, Girirajkumar SM. Markov fuzzy based MAC protocol for life time maximization of wireless sensor network. Int J Comput Appl. 2014;36(4):133–139.
  • Song C. Performance analysis of the IEEE 802.11p multichannel MAC protocol in vehicular Ad Hoc networks. Sensors. 2017;17(12):2890.
  • Nguyen V, Pham C, Zin T, et al. MAC protocols with dynamic interval schemes for VANETs. Veh Commun. 2019;15:40–62.
  • Barradi M, Hafid AS, Gallardo JR. Establishing strict priorities in IEEE 802.11p WAVE vehicular networks. In: 2010 IEEE Global Telecommunications Conference GLOBECOM 2010. IEEE; 2010. p. 1–6.
  • Jang H-C, Feng W-C. Network status detection-based dynamic adaptation of contention window in IEEE 802.11p. In: 2010 IEEE 71st Vehicular Technology Conference. IEEE; 2010. p. 1–5.
  • Wang Y, Ahmed A, Krishnamachari B, et al. IEEE 802.11p performance evaluation and protocol enhancement. In: 2008 IEEE International Conference on Vehicular Electronics and Safety. IEEE; 2008. p. 317–322.
  • Stanica R, Chaput E, Beylot A-L. Enhancements of IEEE 802.11p protocol for access control on a VANET control channel. In: 2011 IEEE International Conference on Communications (ICC). IEEE; 2011. p. 1–5.
  • Amadeo M, Campolo C, Molinaro A. Enhancing IEEE 802.11p/WAVE to provide infotainment applications in VANETs. Ad Hoc Netw. 2012;10(2):253–269.
  • Sheu S-T, Cheng Y-C, Wu J-S. A channel access scheme to compromise throughput and fairness in IEEE 802.11p multi-rate/multi-channel wireless vehicular networks. In: 2010 IEEE 71st Vehicular Technology Conference. IEEE; 2010. p. 1–5.
  • Wang S, Chou C, Liu K, et al. Improving the channel utilization of IEEE 802.11p/1609 networks. In: 2009 IEEE Wireless Communications and Networking Conference. IEEE; 2009. p. 1–6.
  • Campolo C, Cortese A, Molinaro A. CRaSCH: a cooperative scheme for service channel reservation in 802.11p/WAVE vehicular Ad Hoc networks. In: 2009 International Conference on Ultra Modern Telecommunications & Workshops. IEEE; 2009. p. 1–8.
  • Seo H, Yun S, Kim H. Solving the coupon collector's problem for the safety beaconing in the IEEE 802.11p WAVE. In: 2010 IEEE 72nd Vehicular Technology Conference-Fall. IEEE; 2010. p. 1–6.
  • Choi N, Choi S, Seokt Y, et al. A solicitation-based IEEE 802.11p MAC protocol for roadside to vehicular networks. In: 2007 Mobile Networking for Vehicular Environments. IEEE; 2007. p. 91–96.
  • Bilstrup K, Uhlemann E, Strom EG, et al. Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication. In: 2008 IEEE 68th Vehicular Technology Conference. IEEE; 2008. p. 1–5.
  • Alasmary W, Zhuang W. Mobility impact in IEEE 802.11p infrastructureless vehicular networks. Ad Hoc Netw. 2012;10(2):222–230.
  • Elias SJ, Elshaikh M, Darus MY, et al. 802.11p profile adaptive MAC protocol for non-safety messages on vehicular Ad Hoc networks. Indones J Electr Eng Comput Sci. 2018;12(1):208–217.
  • Urmonov O, Kim H. Highly reliable MAC protocol based on associative acknowledgement for vehicular network. Electronics. 2021;10(4):382.
  • Kim J-W, Kim J-W, Jeon D-K. A cooperative communication protocol for QoS provisioning in IEEE 802.11p/WAVE vehicular networks. Sensors. 2018;18(11):3622.
  • Cao Y, Zhang H, Zhou X, et al. A scalable and cooperative MAC protocol for control channel access in VANETs. IEEE Access. 2017;5:9682–9690.
  • Song C, Tan G, Yu C. An efficient multichannel MAC protocol for vehicular Ad Hoc networks. Sensors. 2017;17(10):2293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.