79
Views
0
CrossRef citations to date
0
Altmetric
Articles

Studying the effectiveness of deep active learning in software defect prediction

ORCID Icon &
Pages 534-552 | Received 11 Jun 2023, Accepted 19 Aug 2023, Published online: 05 Sep 2023

References

  • Jones C, Bonsignour O. The economics of software quality. Addison-Wesley Professional; 2011.
  • Li Z, Jing XY, Zhu X. Progress on approaches to software defect prediction. Iet Software. 2018;12(3):161–175. doi:10.1049/iet-sen.2017.0148
  • Hall T, Beecham S, Bowes D, et al. A systematic literature review on fault prediction performance in software engineering. IEEE Trans Software Eng. 2011;38(6):1276–1304. doi:10.1109/TSE.2011.103
  • Menzies T, Milton Z, Turhan B, et al. Defect prediction from static code features: current results, limitations, new approaches. Autom Softw Eng. 2010;17(4):375–407. doi:10.1007/s10515-010-0069-5
  • Feyzi F, Parsa S. FPA-FL: incorporating static fault-proneness analysis into statistical fault localization. J Syst Softw. 2018;136:39–58. doi:10.1016/j.jss.2017.11.002
  • Henry S, Kafura D. Software structure metrics based on information flow. IEEE Trans Software Eng. 1981;5:510–518. doi:10.1109/TSE.1981.231113
  • Feyzi F, Nikravan E, Parsa S. FPA-Debug: effective statistical fault localization considering fault-proneness analysis. arXiv preprint arXiv:1612.05780. 2016.
  • Radjenović D, Heričko M, Torkar R, et al. Software fault prediction metrics: a systematic literature review. Inf Softw Technol. 2013;55(8):1397–1418. doi:10.1016/j.infsof.2013.02.009
  • Rahman F, Devanbu P. How, and why, process metrics are better. In: Notkim D, Cheng BHC, Pohl K, editors. 2013 35th international conference on software engineering (ICSE). San Fransisco, CA: IEEE; 2013, May. p. 432–441.
  • Madeyski L, Jureczko M. Which process metrics can significantly improve defect prediction models? An empirical study. Softw Qual J. 2015;23(3):393–422. doi:10.1007/s11219-014-9241-7
  • Radjenović D, Heričko M, Torkar R, et al. Software fault prediction metrics: a systematic literature review. Inf Softw Technol. 2013;55(8):1397–1418. doi:10.1016/j.infsof.2013.02.009
  • Tang H, Lan T, Hao D, et al. Enhancing defect prediction with static defect analysis. In: ICSE '14: 36th International Conference on Software Engineering. New York, NY: Association for Computing Machinery; 2015, November. p. 43–51.
  • Hall T, Beecham S, Bowes D, et al. A systematic literature review on fault prediction performance in software engineering. IEEE Trans Software Eng. 2011;38(6):1276–1304. doi:10.1109/TSE.2011.103
  • Catal C, Diri B. A systematic review of software fault prediction studies. Expert Syst Appl. 2009;36(4):7346–7354. doi:10.1016/j.eswa.2008.10.027
  • Malhotra R. A systematic review of machine learning techniques for software fault prediction. Appl Soft Comput. 2015;27:504–518. doi:10.1016/j.asoc.2014.11.023
  • Jing XY, Ying S, Zhang ZW, et al. Dictionary learning based software defect prediction. In: ICSE '14: 36th International Conference on Software Engineering. New York, NY: Association for Computing Machinery; 2014, May. p. 414–423.
  • Wang T, Zhang Z, Jing X, et al. Multiple kernel ensemble learning for software defect prediction. Autom Softw Eng. 2016;23(4):569–590. doi:10.1007/s10515-015-0179-1
  • Jing XY, Zhang ZW, Ying S, et al. Software defect prediction based on collaborative representation classification. In: ICSE '14: 36th International Conference on Software Engineering. New York, NY: Association for Computing Machinery; 2014, May. p. 632–633.
  • Zhu K, Ying S, Ding W, et al. IVKMP: a robust data-driven heterogeneous defect model based on deep representation optimization learning. Inf Sci (Ny). 2022;583:332–363. doi:10.1016/j.ins.2021.11.029
  • Zhu K, Ying S, Zhang N, et al. Software defect prediction based on enhanced metaheuristic feature selection optimization and a hybrid deep neural network. J Syst Softw. 2021;180:111026. doi:10.1016/j.jss.2021.111026
  • Chen L, Fang B, Shang Z, et al. Negative samples reduction in cross-company software defects prediction. Inf Softw Technol. 2015;62:67–77. doi:10.1016/j.infsof.2015.01.014
  • Xia X, Lo D, Pan SJ, et al. Hydra: massively compositional model for cross-project defect prediction. IEEE Trans Software Eng. 2016;42(10):977–998. doi:10.1109/TSE.2016.2543218
  • Herzig K. Using pre-release test failures to build early post-release defect prediction models. In: 2014 IEEE 25th international symposium on software reliability engineering. IEEE; 2014, November. p. 300–311.
  • Bennin KE, Toda K, Kamei Y, et al. Empirical evaluation of cross-release effort-aware defect prediction models. In: 2016 IEEE international conference on software quality, reliability and security (QRS). Vienna: IEEE; 2016, 1-3 August. p. 214–221.
  • Zimmermann T, Nagappan N, Gall H, et al. Cross-project defect prediction: a large-scale experiment on data vs. domain vs. process. In: ESEC/FSE09: Joint 12th European Software Engineering Conference. New York, NY: Association for Computing Machinery; 2009, August 24-28. p. 91–100.
  • He Z, Shu F, Yang Y, et al. An investigation on the feasibility of cross-project defect prediction. Autom Softw Eng. 2012;19(2):167–199. doi:10.1007/s10515-011-0090-3
  • Wang S, Yao X. Using class imbalance learning for software defect prediction. IEEE Trans Reliab. 2013;62(2):434–443. doi:10.1109/TR.2013.2259203
  • Zhang H, Zhang X. Comments on” data mining static code attributes to learn defect predictors”. IEEE Trans Software Eng. 2007;33(9):635–637. doi:10.1109/TSE.2007.70706
  • He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263–1284. doi:10.1109/TKDE.2008.239
  • Qian Y, Woodland PC. Very deep convolutional neural networks for robust speech recognition. In: 2016 IEEE spoken language technology workshop (SLT). San Diego, CA: IEEE; 2016, December 13–16. p. 481–488.
  • Young T, Hazarika D, Poria S, et al. Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag. 2018;13(3):55–75. doi:10.1109/MCI.2018.2840738
  • Goswami T. Impact of deep learning in image processing and computer vision. In: Anguera J, Satapathy SC, Bhateja V et al., editors. Microelectronics, electromagnetics and telecommunications Vol. 471. Singapore: Springer; 2018. p. 475–485.
  • Settles B. Active learning literature survey technical report. University of Wisconsin-Madison Department of Computer Sciences. 2009.
  • Tóth Z, Gyimesi P, Ferenc R. A public bug database of github projects and its application in bug prediction. In: Proceedings, Part IV Computational Science and Its Applications - ICCSA 2016 16th International Conference. Cham: Springer; 2016, July. p. 625–638.
  • Ferenc R, Tóth Z, Ladányi G, et al. A public unified Bug dataset for java and its assessment regarding metrics and bug prediction. Softw Qual J. 2020;28(4):1447–1506. doi:10.1007/s11219-020-09515-0
  • Feng S, Keung J, Yu X, et al. COSTE: complexity-based over-sampling TEchnique to alleviate the class imbalance problem in software defect prediction. Inf Softw Technol. 2021;129:106432. doi:10.1016/j.infsof.2020.106432
  • Chen L, Fang B, Shang Z, et al. Tackling class overlap and imbalance problems in software defect prediction. Softw Qual J. 2018;26(1):97–125. doi:10.1007/s11219-016-9342-6
  • Rodriguez D, Herraiz I, Harrison R, et al. Preliminary comparison of techniques for dealing with imbalance in software defect prediction. In: Proceedings of the 18th international conference on evaluation and assessment in software engineering. London, 2014, May. p. 1–10.
  • Chyi Y-M. Classification analysis techniques for skewed class distribution problems. Master Thesis, Department of Information Management, National Sun Yat-Sen University. 2003.
  • Beckmann M, Ebecken NF, de Lima BSP. A KNN under-sampling approach for data balancing. Journal of Intelligent Learning Systems and Applications. 2015;7(04):104. doi:10.4236/jilsa.2015.74010
  • Kingma DP, Ba J. (2014). Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  • Jureczko M, Madeyski L. Towards identifying software project clusters with regard to defect prediction. In: Promise '10: The Proceedings of the 6th international conference on predictive models in software engineering. New York, NY: Association for Computing Machinery; 2010, September 12-13. p. 1–10.
  • Dallmeier V, Zimmermann T. Automatic extraction of bug localization benchmarks from history. In Proc. Int’l Conf. on Automated Software Eng. Citeseer; 2007. p. 433–436.
  • D'Ambros M, Lanza M, Robbes R. An extensive comparison of bug prediction approaches. In: Whitehead J, Zimmermann T, editors. 2010 7th IEEE working conference on mining software repositories (MSR 2010). IEEE; 2010, May. p. 31–41.
  • Hall T, Zhang M, Bowes D, et al. Some code smells have a significant but small effect on faults. ACM Transactions on Software Engineering and Methodology (TOSEM). 2014;23(4):1–39. doi:10.1145/2629648
  • Pascarella L, Palomba F, Bacchelli A. Fine-grained just-in-time defect prediction. J Syst Softw. 2019;150:22–36. doi:10.1016/j.jss.2018.12.001
  • Manjula C, Florence L. Deep neural network-based hybrid approach for software defect prediction using software metrics. Cluster Comput. 2019;22(4):9847–9863. doi:10.1007/s10586-018-1696-z
  • Majd A, Vahidi-Asl M, Khalilian A, et al. SLDeep: statement-level software defect prediction using deep-learning model on static code features. Expert Syst Appl. 2020;147:113156. doi:10.1016/j.eswa.2019.113156
  • Yu T, Wen W, Han X, et al. Conpredictor: concurrency defect prediction in real-world applications. IEEE Trans Software Eng. 2018;45(6):558–575. doi:10.1109/TSE.2018.2791521
  • Ferenc R, Bán D, Grósz T, et al. Deep learning in static, metric-based bug prediction. Array. 2020;6:100021. doi:10.1016/j.array.2020.100021
  • Hassan AE. Predicting faults using the complexity of code changes. In: 2009 IEEE 31st international conference on software engineering. Vancouver, BC: IEEE; 2009, May. p. 78–88.
  • Madeyski L, Jureczko M. Which process metrics can significantly improve defect prediction models? An empirical study. Softw Qual J. 2015;23(3):393–422. doi:10.1007/s11219-014-9241-7
  • Bernstein A, Ekanayake J, Pinzger M. Improving defect prediction using temporal features and non linear models. In: Ninth international workshop on principles of software evolution: in conjunction with the 6th ESEC/FSE joint meeting. ACM; 2007, September 3-4. p. 11–18.
  • Dalla Palma S, Di Nucci D, Palomba F, et al. Within-project defect prediction of infrastructure-as-code using product and process metrics. IEEE Trans Software Eng. 2021;48(6):2086–2104. doi:10.1109/TSE.2021.3051492
  • Manjula C, Florence L. Deep neural network based hybrid approach for software defect prediction using software metrics. Cluster Comput. 2019;22(4):9847–9863. doi:10.1007/s10586-018-1696-z
  • Wang S, Liu T, Tan L. Automatically learning semantic features for defect prediction. In: 2016 IEEE/ACM 38th international conference on software engineering (ICSE). Austin, TX: IEEE; 2016, May. p. 297–308.
  • Wang S, Liu T, Nam J, et al. Deep semantic feature learning for software defect prediction. IEEE Trans Software Eng. 2018;46(12):1267–1293. doi:10.1109/TSE.2018.2877612
  • Dam HK, Tran T, Pham T, et al. Automatic feature learning for predicting vulnerable software components. IEEE Trans Software Eng. 2018;47(1):67–85. doi:10.1109/TSE.2018.2881961
  • Akimova EN, Bersenev AY, Deikov AA, et al. A survey on software defect prediction using deep learning. Mathematics. 2021;9(11):1180. doi:10.3390/math9111180
  • Yang X, Lo D, Xia X, et al. Deep learning for just-in-time defect prediction. In: 2015 IEEE international conference on software quality, reliability and security. Vancouver, British Columbia: IEEE; 2015, 3-5 August. p. 17–26.
  • Yang X, Lo D, Xia X, et al. TLEL: a two-layer ensemble learning approach for just-in-time defect prediction. Inf Softw Technol. 2017;87:206–220. doi:10.1016/j.infsof.2017.03.007
  • Dam HK, Pham T, Ng SW, etal Lessons learned from using a deep tree-based model for software defect prediction in practice. In: 2019 IEEE/ACM 16th international conference on mining software repositories (MSR). Montréal, QC: IEEE; 2019, May. p. 46–57.
  • Li J, He P, Zhu J, et al. Software defect prediction via convolutional neural network. In: 2017 IEEE international conference on software quality, reliability and security (QRS). Prague: IEEE; 2017, July. p. 318–328.
  • Hoang T, Dam HK, Kamei Y, et al. DeepJIT: an end-to-end deep learning framework for just-in-time defect prediction. In: 2019 IEEE/ACM 16th international conference on mining software repositories (MSR). Montreal, QC: IEEE; 2019, May 26-27. p. 34–45.
  • Xu Z, Li S, Xu J, … Tang Y. LDFR: learning deep feature representation for software defect prediction. J Syst Softw. 2019;158:110402. doi:10.1016/j.jss.2019.110402
  • Qiu S, Lu L, Cai Z, et al. Cross-Project defect prediction via transferable deep learning-generated and handcrafted features. SEKE. 2019, July: 431–552. doi:10.18293/SEKE2019-070
  • Limsettho N, Bennin KE, Keung JW, et al. Cross project defect prediction using class distribution estimation and oversampling. Inf Softw Technol. 2018;100:87–102. doi:10.1016/j.infsof.2018.04.001
  • Jing XY, Wu F, Dong X, et al. An improved SDA based defect prediction framework for both within-project and cross-project class-imbalance problems. IEEE Trans Software Eng. 2016;43(4):321–339. doi:10.1109/TSE.2016.2597849
  • Tan M, Tan L, Dara S, et al. Online defect prediction for imbalanced data. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering Vol. 2. Florence: IEEE; 2015, May 16-24. p. 99–108.
  • Ryu D, Choi O, Baik J. Value-cognitive boosting with a support vector machine for cross-project defect prediction. Empir Softw Eng. 2016;21(1):43–71. doi:10.1007/s10664-014-9346-4
  • Wu F, Jing XY, Dong X, et al. Cost-sensitive local collaborative representation for software defect prediction. In: 2016 international conference on software analysis, testing and evolution (SATE). Kunming, Yunnan: IEEE; 2016, November 3-4. p. 102–107.
  • Liu M, Miao L, Zhang D. Two-stage cost-sensitive learning for software defect prediction. IEEE Trans Reliab. 2014;63(2):676–686. doi:10.1109/TR.2014.2316951
  • Malhotra R, Khanna M. An empirical study for software change prediction using imbalanced data. Empir Softw Eng. 2017;22(6):2806–2851. doi:10.1007/s10664-016-9488-7
  • Tong H, Liu B, Wang S. Software defect prediction using stacked denoising autoencoders and two-stage ensemble learning. Inf Softw Technol. 2018;96:94–111. doi:10.1016/j.infsof.2017.11.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.