583
Views
22
CrossRef citations to date
0
Altmetric
Review Paper

Recent applications of bioelectrochemical system for useful resource recovery: retrieval of nutrient and metal from wastewater

, , , &
Pages 173-180 | Received 15 Jan 2015, Accepted 01 Apr 2015, Published online: 30 Apr 2015

References

  • Allen, R. M. , & Bennetto, H. P. (1993). Microbial fuel-cells. Applied Biochemistry and Biotechnology, 39-40, 27–40. doi: 10.1007/BF02918975.
  • Angenent, L. T. , Karim, K. , Al-Dahhan, M. H. , Wrenn, B. A. , & Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22, 477–485. doi: 10.1016/j.tibtech.2004.07.001.
  • Arredondo, M. R. , Kuntke, P. , Jeremiasse, A. W. , Sleutels, T. H. J. A. , Buisman, C. J. N. , & ter Heijne, A. (2015). Bioelectrochemical systems for nitrogen removal and recovery from wastewater. Environmental Science: Water Research & Technology, 1, 22–33. 10.1039/C4EW00066H.
  • Burgess, R. M. , Perron, M. M. , Cantwell, M. G. , Ho, K. T. , Serbst, J. R. , & Pelletier, M. C. (2004). Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations. Archives of Environmental Contamination and Toxicology, 47, 440–447. doi: 10.1007/s00244-004-4003-3.
  • Caffoor, I. (2008). Energy efficient water and wastewater treatment. Oxford, UK: Environmental Knowledge Transfer Network.
  • Cahn, R. P. , Li, N. N. , & Minday, R. M. (1978). Removal of ammonium sulfide from wastewater by liquid membrane process. Environmental Science & Technology, 12, 1051–1056. doi: 10.1021/Es60145a008.
  • Cao, X. X. , Huang, X. , Liang, P. , Xiao, K. , Zhou, Y. J. , Zhang, X. Y. , & Logan, B. E. (2009). A new method for water desalination using microbial desalination cells. Environmental Science & Technology, 43, 7148–7152. doi: 10.1021/Es901950j.
  • Chen, H. M. , & Wang, E. J. (2000). Optical urea biosensor based on ammonium ion selective membrane. Analytical Letters, 33, 997–1011. doi: 10.1080/00032710008543104.
  • Cheng, S. , Dempsey, B. A. , & Logan, B. E. (2007). Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environmental Science & Technology, 41, 8149–8153. doi: 10.1021/Es0712221.
  • Choi, C. , & Cui, Y. (2012). Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresource Technology, 107, 522–525. doi: 10.1016/j.biortech.
  • Cord-Ruwisch, R. , Law, Y. , & Cheng, K. Y. (2011). Ammonium as a sustainable proton shuttle in bioelectrochemical systems. Bioresource Technology, 102, 9691–9696. doi: 10.1016/j.biortech.2011.07.100.
  • Fu, F. , & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418. doi: 10.1016/j.jenvman.2010.11.011.
  • Gilbert, N. (2012). African agriculture: Dirt poor. Nature, 483, 525–527. doi: 10.1038/483525a.
  • Guo, X. , Zeng, L. , Li, X. , & Park, H. S. (2008). Ammonium and potassium removal for anaerobically digested wastewater using natural clinoptilolite followed by membrane pretreatment. Journal of Hazardous Materials, 151, 125–133. doi: 10.1016/j.jhazmat.2007.05.066.
  • He, Z. , & Angenent, L. T. (2006). Application of bacterial biocathodes in microbial fuel cells. Electroanalysis, 18, 2009–2015. doi: 10.1002/elan.200603628.
  • Heidrich, E. S. , Curtis, T. P. , & Dolfing, J. (2011). Determination of the internal chemical energy of wastewater. Environmental Science & Technology, 45, 827–832. doi: 10.1021/es103058w.
  • Heijne, A. T. , Liu, F. , Weijden, R. , Weijma, J. , Buisman, C. J. , & Hamelers, H. V. (2010). Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science & Technology, 44, 4376–4381. doi: 10.1021/es100526g.
  • Howe, A. (2008). Greenhouse gas emissions of water supply and demand management options, Environment Agency, UK.
  • Ichihashi, O. , & Hirooka, K. (2012). Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresource Technology, 114, 303–307. 10.1016/j.biortech.
  • Iranpour, R. , Stenstrom, M. , Tchobanoglous, G. , Miller, D. , Wright, J. , & Vossoughi, M. (1999). Environmental engineering: Energy value of replacing waste disposal with resource recovery. Science, 285, 706–711. doi: 10.1126/science.285.5428.706.
  • Kaur, A. , Kim, J. R. , Michie, I. , Dinsdale, R. M. , Guwy, A. J. , & Premier, G. C. (2013). Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosensors and Bioelectronics, 47, 50–55. doi: 10.1016/j.bios.2013.02.033.
  • Kelly, P. T. , & He, Z. (2014). Nutrients removal and recovery in bioelectrochemical systems: A review. Bioresource Technology, 153, 351–360. doi: 10.1016/j.biortech.2013.12.046.
  • Kim, B. H. , Kim, H. J. , Hyun, M. S. , & Park, D. H. (1999). Direct electrode reaction of Fe(III)-reducing bacterium. Shewanella putrefaciens. Journal of Microbiology and Biotechnology, 9, 127–131.
  • Kim, J. R. , Cheng, S. , Oh, S. E. , & Logan, B. E. (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology, 41, 1004–1009. doi: 10.1021/Es062202m.
  • Kim, J. R. , Premier, G. C. , Hawkes, F. R. , Dinsdale, R. M. , & Guwy, A. J. (2009). Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Journal of Power Sources, 187, 393–399. doi: 10.1016/j.jpowsour.2008.11.020.
  • Kim, J. R. , Zuo, Y. , Regan, J. M. , & Logan, B. E. (2008). Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnology and Bioengineering, 99, 1120–1127. doi: 10.1002/bit.21687.
  • Kim, Y. , & Logan, B. E. (2011a). Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environmental Science & Technology, 45, 5840–5845. doi: 10.1021/es200584q.
  • Kim, Y. , & Logan, B. E. (2011b). Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environmental Science & Technology, 45, 5840–5845. doi: 10.1021/Es200584q.
  • Kondaveeti, S. , & Min, B. (2013). Nitrate reduction with biotic and abiotic cathodes at various cell voltages in bioelectrochemical denitrification system. Bioprocess and Biosystems Engineering, 36, 231–238. doi: 10.1007/s00449-012-0779-0.
  • Kuntke, P. , Geleji, M. , Bruning, H. , Zeeman, G. , Hamelers, H. V. M. , & Buisman, C. J. N. (2011). Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell. Bioresource Technology, 102, 4376–4382. doi: 10.1016/j.biortech.2010.12.085.
  • Kuntke, P. , Śmiech, K. M. , Bruning, H. , Zeeman, G. , Saakes, M. , Sleutels, T. H. J. A. , … Buisman, C. J. N. (2012). Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research, 46, 2627–2636. 10.1016/j.watres.
  • Lahav, O. , & Green, M. (1998). Ammonium removal using ion exchange and biological regeneration. Water Research, 32, 2019–2028. doi: 10.1016/S0043-1354(97)00453-3.
  • Larminie, J. , & Dicks, A. (2003). Fuel cell systems explained (2nd ed.). Chichester: Wiley.
  • Lefebvre, O. , Neculita, C. M. , Yue, X. , & Ng, H. Y. (2012). Bioelectrochemical treatment of acid mine drainage dominated with iron. Journal of Hazardous Materials, 241-242, 411–417. doi: 10.1016/j.jhazmat.2012.09.062.
  • Lewis, K. (1966). Symposium on bioelectrochemistry of microorganisms, IV. Biochemical fuel cells. Bacteriological Reviews, 30, 101–113.
  • Lloyd, J. R. , Lovley, D. R. , & Macaskie, L. E. (2003). Biotechnological application of metal-reducing microorganisms. Advances in Applied Microbiology, 53, 85–128.
  • Logan, B. E. (2004). Peer reviewed: Extracting hydrogen and electricity from renewable resources. Environmental Science & Technology, 38, 160A–167A. doi: 10.1021/es040468s.
  • Logan, B. E. , Call, D. , Cheng, S. , Hamelers, H. V. , Sleutels, T. H. , Jeremiasse, A. W. , & Rozendal, R. A. (2008). Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environmental Science & Technology, 42, 8630–8640. doi: 10.1021/es801553z.
  • Lovley, D. R. (1993). Dissimilatory metal reduction. Annual Review of Microbiology, 47, 263–290. doi: 10.1146/annurev.mi.47.100193.001403.
  • Lovley, D. R. (1997). Microbial Fe(III) reduction in subsurface environments. FEMS Microbiology Reviews, 20, 305–313. doi: 10.1111/j.1574-6976.1997.tb00316.x.
  • Lovley, D. R. (2006). Microbial fuel cells: Novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology, 17, 327–332. doi: 10.1016/j.copbio.2006.04.006.
  • Lovley, D. R. , & Phillips, E. J. P. (1988). Novel mode of microbial energy metabolism: Organic carbon coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54, 1472–1480.
  • Lu, Z. H. , Chang, D. M. , Ma, J. X. , Huang, G. T. , Cai, L. K. , & Zhang, L. H. (2015). Behavior of metal ions in bioelectrochemical systems: A review. Journal of Power Sources, 275, 243–260. doi: 10.1016/j.jpowsour.2014.10.168.
  • Luo, H. P. , Liu, G. L. , Zhang, R. D. , Bai, Y. P. , Fu, S. Y. , & Hou, Y. P. (2014). Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. Journal of Hazardous Materials, 270, 153–159. doi: 10.1016/j.jhazmat.2014.01.050.
  • McCarty, P. L. , Bae, J. , & Kim, J. (2011). Domestic wastewater treatment as a net energy producer–Can this be achieved?. Environmental Science & Technology, 45, 7100–7106. doi: 10.1021/es2014264.
  • Mehanna, M. , Kiely, P. D. , Call, D. F. , & Logan, B. E. (2010). Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environmental Science & Technology, 44, 9578–9583. doi: 10.1021/es1025646.
  • Modin, O. , Wang, X. , Wu, X. , Rauch, S. , & Fedje, K. K. (2012). Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. Journal of Hazardous Materials, 235–236, 291–297. 10.1016/j.jhazmat.
  • Oliveira, V. B. , Simões, M. , Melo, L. F. , & Pinto, A. M. F. R. (2013). Overview on the developments of microbial fuel cells. Biochemical Engineering Journal, 73, 53–64. doi: 10.1016/j.bej.2013.01.012.
  • Park, T. J. , Lee, S. Y. , Heo, N. S. , & Seo, T. S. (2010). In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli . Angewandte Chemie International Edition, 49, 7019–7024. doi: 10.1002/anie.201001524.
  • Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. In Proceedings of the Royal Society of London. Series B. Containing papers of a biological character, 84, 260–276. 10.1098/rspb.1911.0073.
  • Premier, G. C. , Kim, J. R. , Massanet-Nicolau, J. , Kyazze, G. , Esteves, S. , Penumathsa, B. K. , … Guwy, A. J. (2012). Integration of biohydrogen, biomethane and bioelectrochemical systems. Renewable Energy, 49, 188–192. doi: 10.1016/j.renene.2012.01.035.
  • Qin, B. , Luo, H. , Liu, G. , Zhang, R. , Chen, S. , Hou, Y. , & Luo, Y. (2012). Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresource Technology, 121, 458–461. 10.1016/j.biortech.
  • Rezaei, F. , Richard, T. L. , Brennan, R. A. , & Logan, B. E. (2007). Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environmental Science & Technology, 41, 4053–4058. doi: 10.1021/es070426e.
  • Rozendal, R. A. , Hamelers, H. V. , & Buisman, C. J. (2006). Effects of membrane cation transport on pH and microbial fuel cell performance. Environmental Science & Technology, 40, 5206–5211. doi: 10.1021/es060387r.
  • Saeed, H. M. , Husseini, G. A. , Yousef, S. , Saif, J. , Al-Asheh, S. , Abu Fara, A. , … Aidan, A. (2015). Microbial desalination cell technology: A review and a case study. Desalination, 359, 1–13. doi: 10.1016/j.desal.2014.12.024.
  • Su, L. , Jia, W. , Hou, C. , & Lei, Y. (2011). Microbial biosensors: A review. Biosensors and Bioelectronics, 26, 1788–1799. doi: 10.1016/j.bios.2010.09.005.
  • Tandukar, M. , Huber, S. J. , Onodera, T. , & Pavlostathis, S. G. (2009). Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environmental Science & Technology, 43, 8159–8165. doi: 10.1021/es9014184.
  • Tao, H. C. , Lei, T. , Shi, G. , Sun, X. N. , Wei, X. Y. , Zhang, L. J. , & Wu, W. M. (2014). Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. Journal of Hazardous Materials, 264, 1–7. doi: 10.1016/j.jhazmat.2013.10.057.
  • Ter Heijne, A. , Hamelers, H. V. , & Buisman, C. J. (2007). Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environmental Science & Technology, 41, 4130–4134. doi: 10.1021/es0702824.
  • Turner, R. J. , Borghese, R. , & Zannoni, D. (2012). Microbial processing of tellurium as a tool in biotechnology. Biotechnology Advances, 30, 954–963. doi: 10.1016/j.biotechadv.2011.08.018.
  • Wu, X. , & Modin, O. (2013). Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor. Bioresource Technology, 146, 530–536. 10.1016/j.biortech.
  • Zang, G.-L. , Sheng, G.-P. , Li, W.-W. , Tong, Z.-H. , Zeng, R. J. , Shi, C. , & Yu, H.-Q. (2012). Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique. Physical Chemistry Chemical Physics, 14, 1978–1984. doi: 10.1039/C2CP23402E.
  • Zhang, X. C. , & Halme, A. (1995). Modelling of a microbial fuel cell process. Biotechnology Letters, 17, 809–814. doi: 10.1007/Bf00129009.
  • Zhou, M. H. , Wang, H. Y. , Hassett, D. J. , & Gu, T. Y. (2013). Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. Journal of Chemical Technology and Biotechnology, 88, 508–518. doi: 10.1002/Jctb.4004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.