44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of shale gas reservoir reserves and production capacity based on Arps regression

, , , &
Pages 87-99 | Received 16 Aug 2023, Accepted 29 Feb 2024, Published online: 14 Mar 2024

References

  • Chen, Y., Ma, G., Jin, Y., Wang, H., & Wang, Y. (2019). Productivity evaluation of unconventional reservoir development with three-dimensional fracture networks. Fuel, 244(May 15), 304–313. https://doi.org/10.1016/j.fuel.2019.01.188
  • Feng, S., Xie, R., Zhou, W., Yin, S., Deng, M., Chen, J., & Luo, Z. (2021). A new method for logging identification of fluid properties in tight sandstone gas reservoirs based on gray correlation weight analysis-A case study of the Middle Jurassic Shaximiao Formation on the eastern slope of the Western Sichuan Depression. China Interpretation, 9(4), 1167–1181. https://doi.org/10.1190/INT-2020-0247.1
  • Han, G., Liu, M., & Li, Q. (2020). Flowing material balance method with adsorbed phase volumes for unconventional gas reservoirs. Energy Exploration & Exploitation, 38(2), 519–532. https://doi.org/10.1177/0144598719880293
  • He, X., Deng, R., Yang, J., & Geng, S. (2022). Adaptive material balance method for reserve evaluation: A combination of machine learning and reservoir engineering. Journal of Energy Engineering, 148(3), 4022018–4022031. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000830
  • He, J., Guo, X., Cui, H., Lei, K., Lei, Y., Zhou, L., Liu, Q., Zhu, Y., & Liu, L. (2021). Modification of the calculation method for dynamic reserves in tight sandstone gas reservoirs. American Chemical Society Omega, 6(44), 29955–29964. https://doi.org/10.1021/acsomega.1c04473
  • Hu, B., DeBruler, C., Rhodes, Z., & Liu, T. L. (2017). Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. Journal of the American Chemical Society, 139(3), 1207–1214. https://doi.org/10.1021/jacs.6b10984
  • Hu, Z., Li, Y., Chang, J., Duan, X., Mu, Y., & Xu, Y. (2020). New model for production prediction of shale gas wells. Energy & Fuels, 34(12), 16486–16492. https://doi.org/10.1021/acs.energyfuels.0c03051
  • Kadeethum, T., Salimzadeh, S., & Nick, H. M. (2020). Well productivity evaluation in deformable single-fracture media. Geothermics, 87(Sep.), 101839–101854. https://doi.org/10.1016/j.geothermics.2020.101839
  • Kang, L., Guo, W., Zhang, X., Liu, Y., & Shao, Z. (2022). Differentiation and prediction of shale gas production in horizontal wells: A case study of the Weiyuan shale gas field, China. Energies, 15(17), 6161–6173. https://doi.org/10.3390/en15176161
  • Krasnyuk, M., Hrashchenko, I., Goncharenko, S., & Krasniuk, S. (2022). Hybrid application of decision trees, fuzzy logic and production rules for supporting investment decision making (on the example of an oil and gas producing company). ACCESS Journal: Access to Science, Business, Innovation in Digital Economy, 3(3), 278–291. https://doi.org/10.46656/access.2022.3.3(7)
  • Liu, C., Shen, Y., Zhang, J., Lu, D., Liu, H., & Wu, H. (2019). Production analysis in shale gas reservoirs based on fracturing-enhanced permeability areas. Science China Physics, Mechanics & Astronomy, 62(10), 104611–104619. https://doi.org/10.1007/s11433-019-9427-x
  • Lu, T., Li, Z., Lai, F., Meng, Y., Ma, W., Sun, Y., & Wei, M. (2019). Blasingame decline analysis for variable rate/variable pressure drop: A multiple fractured horizontal well case in shale gas reservoirs. Journal of Petroleum Science and Engineering, 178(1), 193–204. https://doi.org/10.1016/j.petrol.2019.03.036
  • Luo, A., Li, Y., Wu, L., Peng, Y., & Tang, W. (2021). Fractured horizontal well productivity model for shale gas considering stress sensitivity, hydraulic fracture azimuth, and interference between fractures. Natural Gas Industry B, 8(3), 278–286. https://doi.org/10.1016/j.ngib.2021.04.008
  • Lv, Q., Ma, S., Jiang, J., Liu, L., Zhou, Z., Liu, L., & Bai, J. (2022). Pyrolysis of oil-based drill cuttings from shale gas field: Kinetic, thermodynamic, and product properties. Fuel, 323(Sep.1), 124332–124342. https://doi.org/10.1016/j.fuel.2022.124332
  • Lysyy, M., Fernø, M., & Ersland, G. (2021). Seasonal hydrogen storage in a depleted oil and gas field. International Journal of Hydrogen Energy, 46(49), 25160–25174. https://doi.org/10.1016/j.ijhydene.2021.05.030
  • Mohagheghian, E., Hassanzadeh, H., & Chen, Z. (2019). CO2 sequestration coupled with enhanced gas recovery in shale gas reservoirs. Journal of CO2 Utilization, 34(1), 646–655. https://doi.org/10.1016/j.jcou.2019.08.016
  • Niu, W., Lu, J., Sun, Y., Guo, W., Liu, Y., & Mu, Y. (2022). Development of visual prediction model for shale gas wells production based on screening main controlling factors. Energy, 250(Jul.1), 123812–123821. https://doi.org/10.1016/j.energy.2022.123812
  • Wang, Y., Liu, H., Wang, W., Hu, X., Dai, C., & Fang, S. (2021). A new production analysis method for shale gas well based on the evaluation of decline parameters in advance. Journal of Natural Gas Science and Engineering, 89(5), 103865–103877. https://doi.org/10.1016/j.jngse.2021.103865
  • Wang, T., Tian, S., Zhang, W., Ren, W., & Li, G. (2020). Production model of a fractured horizontal well in shale gas reservoirs. Energy & Fuels, 35(1), 493–500. https://doi.org/10.1021/acs.energyfuels.0c03787
  • Wang, S., Zhang, Y., Guo, W., Pi, T., & Li, X. (2023). Vibration analysis of nonlinear damping systems by the discrete incremental harmonic balance method. Nonlinear Dynamics, 111(3), 2009–2028. https://doi.org/10.1007/s11071-022-07953-y
  • Wei, Y., Jia, A., Xu, Y., & Fang, J. (2021). Progress on the different methods of reserves calculation in the whole life cycle of gas reservoir development. Journal of Natural Gas Geoscience, 6(1), 55–63. https://doi.org/10.1016/j.jnggs.2021.04.001
  • Wei, Y., Wang, J., Yu, W., Qi, Y., Miao, J., Yuan, H., & Liu, C. (2021). A smart productivity evaluation method for shale gas wells based on 3D fractal fracture network model. Petroleum Exploration and Development, 48(4), 911–922. https://doi.org/10.1016/S1876-3804(21)60076-9
  • Wu, H., Huang, C., Wen, N., Mao, T., Tao, S., & Wang, M. (2021). Analysis of the corrosion failure causes of shale gas surface pipelines. Materials and Corrosion, 72(12), 1908–1918. https://doi.org/10.1002/maco.202112494
  • Yuan, Y., Qi, Z., Chen, Z., Yan, W., & Zhao, Z. (2020). Production decline analysis of shale gas based on a probability density distribution function. Journal of Geophysics and Engineering, 17(2), 365–376. https://doi.org/10.1093/jge/gxz122
  • Zeng, J., Liu, J., Li, W., Leong, Y. K., Elsworth, D., & Guo, J. (2021). Shale gas reservoir modeling and production evaluation considering complex gas transport mechanisms and dispersed distribution of kerogen. Petroleum Science, 18(1), 195–218. https://doi.org/10.1007/s12182-020-00495-1
  • Zhao, L., Fan, Z., Wang, M., Xing, G., Zhao, W., Tan, C., & Cheng, Y. (2020). Productivity evaluation of vertical wells incorporating fracture closure and reservoir pressure drop in fractured reservoirs. Mathematical Problems in Engineering, 2020(3), 9356178–9356188. https://doi.org/10.1155/2020/9356178
  • Zhao, S., Kang, S., Zheng, M., Lu, S., Yang, Y., Zhang, H., & Zhu, D. (2021). Prediction of decline in shale gas well production using stable carbon isotope technique. Frontiers of Earth Science, 15(4), 849–859. https://doi.org/10.1007/s11707-021-0935-4
  • Zhou, S., Dong, D., Zhang, J., Zou, C., Tian, C., Rui, Y., Liu, D., & Jiao, P. (2021). Optimization of key parameters for porosity measurement of shale gas reservoirs. Natural Gas Industry B, 8(5), 455–463. https://doi.org/10.1016/j.ngib.2021.08.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.