48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microwave-assisted extraction of lithium from hectorite clay

ORCID Icon, &
Pages 108-117 | Received 26 Jan 2024, Accepted 28 Mar 2024, Published online: 02 Apr 2024

References

  • Al-Harahsheh, M., & Kingman, S. W. (2004). Microwave-assisted leaching—a review. Hydrometallurgy, 73(3), 189–203. https://doi.org/10.1016/j.hydromet.2003.10.006
  • Amarasekara, A. S., Herath, H. N. K., Grady, T. L., & Gutierrez Reyes, C. D. (2022). Oxidation of glucose to glycolic acid using oxygen and pyrolyzed spent Li-ion battery electrode material as catalyst. Applied Catalysis A General, 648, 118920. https://doi.org/10.1016/j.apcata.2022.118920
  • Amarasekara, A. S., Pinzon, S. K., Rockward, T., & Herath, H. N. K. (2022). Spent Li-Ion battery electrode material with lithium nickel manganese cobalt oxide as a reusable catalyst for oxidation of biofurans. ACS Sustainable Chemistry & Engineering, 10(38), 12642–12650. https://doi.org/10.1021/acssuschemeng.2c03346
  • Amer, A. M. (2008). The hydrometallurgical extraction of lithium from egyptian montmorillonite-type clay. JOM, 60(10), 55–57. https://doi.org/10.1007/s11837-008-0137-5
  • Büyükburç, A., & Köksal, G. (2005). An attempt to minimize the cost of extracting lithium from boron clays through robust process design. Clays and Clay Minerals, 53(3), 301–309. https://doi.org/10.1346/CCMN.2005.0530310
  • Choubey, P. K., Kim, M.-S., Srivastava, R. R., Lee, J.-C., & Lee, J.-Y. (2016). Advance review on the exploitation of the prominent energy-storage element: lithium. Part I: From mineral and brine resources. Minerals Engineering, 89, 119–137. https://doi.org/10.1016/j.mineng.2016.01.010
  • Crocker, L. (1988).Bulletin (USA). US Bureau of Mines Technical Report 691. Washington DC: US Department of Interior, Bureau of Mines, GPO.
  • Crocker, L. L., & H, R. (1987). Lithium and its recovery from low-grade nevada clays. B. O. Mines PB-88-232541/XAB; BM-B-691. Salt Lake City, UT: Bureau of Mines, Technical Report.
  • Egunlae, O., Obisesan, P., & Adeloye, A. (2006). Lithium recovery from Ekiti clays. Nigeria Journal of Engineering Management (NJEM), 7(4), 46–52.
  • Geological, U. (2022). U.S. Geological survey, mineral commodity summaries, january 2022. Retrieved January from https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-lithium.pdf
  • Glanzman, R. K., McCarthy, J. H., & Rytuba, J. J. (1978). Lithium in the McDermitt caldera, nevada and oregon. In S. S. Penner (Ed.), Lithium needs and resources (pp. 347–353). Pergamon. https://doi.org/10.1016/B978-0-08-022733-7.50019-8
  • Green, J., Mackenzie, K., & Sharp, J. (1970). Thermal reactions of synthetic hectorite. Clays and Clay Minerals, 18(6), 339–346. https://doi.org/10.1346/CCMN.1970.0180606
  • Grosjean, C., Miranda, P. H., Perrin, M., & Poggi, P. (2012). Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renewable and Sustainable Energy Reviews, 16(3), 1735–1744. https://doi.org/10.1016/j.rser.2011.11.023
  • Kamariah, N., Kalebic, D., Xanthopoulos, P., Blannin, R., Araujo, F. P., Koelewijn, S.-F., Dehaen, W., Binnemans, K., & Spooren, J. (2022). Conventional versus microwave-assisted roasting of sulfidic tailings: Mineralogical transformation and metal leaching behavior. Minerals Engineering, 183, 107587. https://doi.org/10.1016/j.mineng.2022.107587
  • Kluksdahl, H. E. (1986). Extraction of lithium from lithium-containing materials. Google Patents.
  • Lalasari, L. H., Rohmah, M., Setiawan, I., Natasha, N. C., Andriyah, L., Arini, T., Firdiyono, F., & Wahyuadi, J. (2019). Effect of leaching temperature on lithium recovery fromLi-montmorillonite (Bledug Kuwu’s Mud). IOP Conference Series: Materials Science and Engineering, 478, 012024. https://doi.org/10.1088/1757-899x/478/1/012024
  • Lin, S., Li, K., Yang, Y., Gao, L., Omran, M., Guo, S., Chen, J., & Chen, G. (2021). Microwave-assisted method investigation for the selective and enhanced leaching of manganese from low-grade pyrolusite using pyrite as the reducing agent. Chemical Engineering & Processing - Process Intensification, 159, 108209. https://doi.org/10.1016/j.cep.2020.108209
  • Liu, J., Xu, R., Sun, W., Wang, L., & Zhang, Y. (2024). Lithium extraction from lithium-bearing clay minerals by calcination-leaching method. Minerals, 14(3), 248. https://doi.org/10.3390/min14030248
  • Luo, H., Peng, H., & Zhao, Q. (2022). High flux Mg2+/Li+ nanofiltration membranes prepared by surface modification of polyethylenimine thin film composite membranes. Applied Surface Science, 579, 152161. https://doi.org/10.1016/j.apsusc.2021.152161
  • Price, D. M. (2022). Metal market price www.dailymetalprice.com
  • Reinosa, J. J., García-Baños, B., Catalá-Civera, J. M., & Fernández, J. F. (2019). A step ahead on efficient microwave heating for kaolinite. Applied Clay Science, 168, 237–243. https://doi.org/10.1016/j.clay.2018.11.001
  • Rezaee, M., Han, S., Sagzhanov, D., Vaziri Hassas, B., Slawecki, T. M., Agrawal, D., Akbari, H., & Mensah-Biney, R. (2022). Microwave-assisted calcination of spodumene for efficient, low-cost and environmentally friendly extraction of lithium. Powder Technology, 397, 116992. https://doi.org/10.1016/j.powtec.2021.11.036
  • Salakjani, N. K., Singh, P., & Nikoloski, A. N. (2019). Acid roasting of spodumene: Microwave vs. conventional heating. Minerals Engineering, 138, 161–167. https://doi.org/10.1016/j.mineng.2019.05.003
  • Song, J., Huang, T., Qiu, H., Li, X.-M., & He, T. (2017). Recovery of lithium from salt lake brine of high Mg/Li ratio using Na[FeCl4*2TBP] as extractant: Thermodynamics, kinetics and processes. Hydrometallurgy, 173, 63–70. https://doi.org/10.1016/j.hydromet.2017.08.003
  • Srivastava, R. R., Ilyas, S., Rajak, D. K., Yang, J.-H., & Kim, H. (2024). Recycling of yttrium and europium from microwave-roasted waste cathode ray tube phosphor powder. JOM, 76(3), 1429–1436. https://doi.org/10.1007/s11837-023-06252-0
  • Sun, S., Yu, X., Li, M., Duo, J., Guo, Y., & Deng, T. (2020). Green recovery of lithium from geothermal water based on a novel lithium iron phosphate electrochemical technique. Journal of Cleaner Production, 247, 119178. https://doi.org/10.1016/j.jclepro.2019.119178
  • Tabelin, C. B., Dallas, J., Casanova, S., Pelech, T., Bournival, G., Saydam, S., & Canbulat, I. (2021). Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Minerals Engineering, 163, 106743. https://doi.org/10.1016/j.mineng.2020.106743
  • Xu, W., He, L., & Zhao, Z. (2021). Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials. Desalination, 503, 114935. https://doi.org/10.1016/j.desal.2021.114935
  • Xu, W., Liu, D., He, L., & Zhao, Z. (2020). A comprehensive membrane process for preparing lithium carbonate from high Mg/Li brine. Membranes, 10(12), 371. https://doi.org/10.3390/membranes10120371
  • Xu, X., Li, Y., Yang, D., Zheng, X., Wang, Y., Pan, J., Zhang, T., Xu, J., Qiu, F., Yan, Y., & Li, C. (2018). A facile strategy toward ion-imprinted hierarchical mesoporous material via dual-template method for simultaneous selective extraction of lithium and rubidium. Journal of Cleaner Production, 171, 264–274. https://doi.org/10.1016/j.jclepro.2017.10.023
  • Zhang, Y., Hu, Y., Sun, N., Khoso, S. A., Wang, L., & Sun, W. (2019). A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine. Hydrometallurgy, 187, 125–133. https://doi.org/10.1016/j.hydromet.2019.05.019
  • Zhang, Y., Hu, Y., Wang, L., & Sun, W. (2019). Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Minerals Engineering, 139, 105868. https://doi.org/10.1016/j.mineng.2019.105868
  • Zhang, Y., Sun, W., Xu, R., Wang, L., & Tang, H. (2021). Lithium extraction from water lithium resources through green electrochemical-battery approaches: A comprehensive review. Journal of Cleaner Production, 285, 124905. https://doi.org/10.1016/j.jclepro.2020.124905
  • Zhao, H., Wang, Y., & Cheng, H. (2023). Recent advances in lithium extraction from lithium-bearing clay minerals. Hydrometallurgy, 217, 106025. https://doi.org/10.1016/j.hydromet.2023.106025
  • Zhu, L., Gu, H., Wen, H., & Yang, Y. (2021). Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process. Hydrometallurgy, 206, 105759. https://doi.org/10.1016/j.hydromet.2021.105759

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.