874
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Guild Patterns of Basidiomycetes Community Associated With Quercus mongolica in Mt. Jeombong, Republic of Korea

ORCID Icon, , , , & ORCID Icon
Pages 13-23 | Received 28 Nov 2017, Accepted 09 Feb 2018, Published online: 29 Mar 2018

References

  • Mayer AM. Plant–fungal interactions: a plant physiologist’s viewpoint. Phytochemistry. 1989;28:311–317.
  • Bonfante P, Genre A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun. 2010;1:48.
  • Root RB. The niche exploitation pattern of the blue‐gray gnatcatcher. Ecol Monogr. 1967;37:317–350.
  • Landeweert R, Hoffland E, Finlay RD, et al. Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol. 2001;16:248–254.
  • Rayner AD, Boddy L. Fungal decomposition of wood. Its biology and ecology. Chichester (NY): John Wiley & Sons Ltd.; 1988.
  • Wardle DA, Bardgett RD, Klironomos JN, et al. Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629–1633.
  • Hansen PA. Prediction of macrofungal occurrence in Swedish beech forests from soil and litter variable models. Plant Ecol. 1988;78:31–44.
  • Kernaghan G, Harper K. Community structure of ectomycorrhizal fungi across an alpine/subalpine ecotone. Ecography. 2001;24:181–188.
  • Jumpponen A, Egerton-Warburton LM. Mycorrhizal fungi in successional environments: a community assembly model incorporating host plant, environmental, and biotic filters. In: Dighton J, White JF, Oudemans P, editors. The fungal community: its organization and role in the ecosystem. Vol. 23. Boca Raton (FL): CRC Press; 2005. p. 139–168.
  • Nguyen NH, Williams LJ, Vincent JB, et al. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field‐based tree experiment. Mol Ecol. 2016;25:4032–4046.
  • Plomion C, Fievet V. Oak genomics takes off… and enters the ecological genomics era. New Phytol. 2013;199:308–310.
  • Oldfield S, Eastwood A. The red list of oaks. Cambridge, UK: Fauna & Flora International; 2007.
  • Mosca E, Montecchio L, Sella L, et al. Short-term effect of removing tree competition on the ectomycorrhizal status of a declining pedunculate oak forest (Quercus robur L.). For Ecol Manage. 2007;244:129–40.
  • Smith ME, Douhan GW, Rizzo DM. Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol. 2007;174:847–863.
  • Walker JF, Miller OK Jr, Horton JL. Seasonal dynamics of ectomycorrhizal fungus assemblages on oak seedlings in the southeastern Appalachian Mountains. Mycorrhiza. 2008;18:123–132.
  • Moser AM, Frank JL, D’allura JA, et al. Ectomycorrhizal communities of Quercus garryana are similar on serpentine and nonserpentine soils. Plant Soil. 2009;315:185–194.
  • Richard F, Roy M, Shahin O, et al. Ectomycorrhizal communities in a Mediterranean forest ecosystem dominated by Quercus ilex: seasonal dynamics and response to drought in the surface organic horizon. Ann For Sci. 2011;68:57–68.
  • Wang Q, He XH, Guo L-D. Ectomycorrhizal fungus communities of Quercus liaotungensis Koidz of different ages in a northern China temperate forest. Mycorrhiza. 2012;22:461–470.
  • Toju H, Yamamoto S, Sato H, et al. Community composition of root‐associated fungi in a Quercus‐dominated temperate forest: “codominance” of mycorrhizal and root‐endophytic fungi. Ecol Evol. 2013;3:1281–1293.
  • Jang W-S, Park P-S, Han A-R, et al. The spatial distribution of Quercus mongolica and its association with other tree species in two Quercus mongolica stands in Mt. Jiri, Korea. J Ecol Environ. 2010;33:67–77.
  • He F, Yang B, Wang H, et al. Changes in composition and diversity of fungal communities along Quercus mongolica forests developments in Northeast China. Appl Soil Ecol. 2016;100:162–171.
  • Kim CS, Nam JW, Jo JW, et al. Studies on seasonal dynamics of soil-higher fungal communities in Mongolian oak-dominant Gwangneung forest in Korea. J Microbiol. 2016;54:14–22.
  • Goldmann K, Schröter K, Pena R, et al. Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Sci Rep. 2016;6:31439.
  • Barrico L, Rodríguez-Echeverría S, Freitas H. Diversity of soil basidiomycete communities associated with Quercus suber L. in Portuguese montados. Eur J Soil Biol. 2010;46:280–287.
  • Lee K-S, Cho D-S. Relationships between the spatial distribution of vegetation and microenviromnent in a temperate hardwood forest in Mt. Jeombong biosphere reserve area, Korea. Korean J Ecol. 2000;23:241–253.
  • Lee W, Kim J, Jin G. The analysis of successional trends by topographic positions in the natural deciduous forest of Mt. Chumbong. J Korean For Soc. 2000;89:655–665.
  • Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA, editors. Plant molecular biology manual. Netherlands: Springer; 1994. p. 183–190.
  • Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–118.
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336.
  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461.
  • Kõljalg U, Nilsson RH, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–5277.
  • R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.
  • Wickham H. Ggplot2: elegant graphics for data analysis. Switzerland: Springer; 2016.
  • McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.
  • Nguyen NH, Song Z, Bates ST, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–248.
  • Tedersoo L, Bahram M, Ryberg M, et al. Global biogeography of the ectomycorrhizal/sebacina lineage (Fungi, Sebacinales) as revealed from comparative phylogenetic analyses. Mol Ecol. 2014;23:4168–4183.
  • Selosse M-A, Dubois M-P, Alvarez N. Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res. 2009;113:1062–1019.
  • Long D, Liu J, Han Q, et al. Ectomycorrhizal fungal communities associated with Populus simonii and Pinus tabuliformis in the hilly-gully region of the Loess Plateau, China. Sci Rep. 2016;6:24336.
  • O’Hanlon R, Harrington TJ. The macrofungal diversity and community of Atlantic oak (Quercus petraea and Q. robur) forests in Ireland. Anales Jard Bot Madrid. 2012;69:107–117.
  • Buee M, Reich M, Murat C, et al. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 2009;184:449–456.
  • Nel B, Steinberg C, Labuschagne N, et al. Isolation and characterization of nonpathogenic Fusarium oxysporum isolates from the rhizosphere of healthy banana plants. Plant Pathol. 2006;55:207–216.
  • Vinale F, Sivasithamparam K, Ghisalberti EL, et al. Trichoderma–plant–pathogen interactions. Soil Biol Biochem. 2008;40:1–10.
  • Fravel D, Olivain C, Alabouvette C. Fusarium oxysporum and its biocontrol. New Phytol. 2003;157:493–502.
  • Subke J-A, Hahn V, Battipaglia G, et al. Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia. 2004;139:551–559.
  • Baum C, Hrynkiewicz K. Clonal and seasonal shifts in communities of saprotrophic microfungi and soil enzyme activities in the mycorrhizosphere of Salix spp. J Plant Nutr Soil Sci. 2006;169:481–487.
  • Cloete KJ, Valentine AJ, Stander MA, et al. Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a sclerophyllous medicinal shrub, Agathosma betulina (Berg.) Pillans. Microb Ecol. 2009;57:624–632.
  • Smith GR, Finlay RD, Stenlid J, et al. Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of wood‐decay basidiomycetes. New Phytol. 2017;215:511–513.
  • Vasiliauskas R, Menkis A, Finlay RD, et al. Wood-decay fungi in fine living roots of conifer seedlings. New Phytol. 2007;174:441–446.
  • Galante TE, Horton TR, Swaney DP. 95% of basidiospores fall within 1 m of the cap: a field-and modeling-based study. Mycologia. 2011;103:1175–1183.
  • Taylor J, Jacobson D, Fisher M. The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol. 1999;37:197–246.
  • Landeweert R, Leeflang P, Smit E, et al. Diversity of an ectomycorrhizal fungal community studied by a root tip and total soil DNA approach. Mycorrhiza. 2005;15:1–6.
  • Van der Linde S, Haller S. Obtaining a spore free fungal community composition. Fungal Ecol. 2013;6:522–526.
  • Schmit JP, Lodge DJ. Classical methods and modern analysis for studying fungal diversity. In: Dighton J, White JF, Oudemans P, editors. The fungal community: its organization and role in the ecosystem. Vol. 23. Boca Raton (FL): CRC Press; 2005. p. 193–214.
  • Kjøller R. Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiol Ecol. 2006;58:214–224.
  • Genney DR, Anderson IC, Alexander IJ. Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol. 2006;170:381–390.
  • Koide RT, Xu B, Sharda J. Contrasting below-ground views of an ectomycorrhizal fungal community. New Phytol. 2005;166:251–262.
  • Dahlberg A, Jonsson L, Nylund J-E. Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot. 1997;75:1323–1335.
  • Gehring CA, Theimer TC, Whitham TG, et al. Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes. Ecology. 1998;79:1562–1572.
  • Horton TR, Bruns TD. The molecular revolution in ectomycorrhizal ecology: peeking into the black‐box. Mol Ecol. 2001;10:1855–1871.