1,669
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Efficacy of Diphenyleneiodonium Chloride (DPIC) Against Diverse Plant Pathogens

, , &
Pages 105-111 | Received 27 Oct 2018, Accepted 04 Dec 2018, Published online: 14 Jan 2019

References

  • Savary S, Teng PS, Willocquet L, et al. Quantification and modeling of crop losses: a review of purposes. Annu Rev Phytopathol. 2006;44:89–112.
  • Strange RN, Scott PR. Plant disease: a threat to global food security. Annu Rev Phytopathol. 2005;43:83–116.
  • Makovitzki A, Viterbo A, Brotman Y, et al. Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol. 2007;73:6629–6636.
  • Boyraz N, Özcan M. Inhibition of phytopathogenic fungi by essential oil, hydrosol, ground material and extract of summer savory (Satureja hortensis L.) growing wild in Turkey. Int J Food Microbiol. 2006;107:238–242.
  • Rahman M, Punja ZK. Factors influencing development of root rot on ginseng caused by Cylindrocarpon destructans. Phytopathology. 2005;95:1381–1390.
  • Denny TP. Plant pathogenic Ralstonia species. In: Gnanamanickam SS, editor. Plant-associated bacteria. Dordrecht: Springer; 2007. p. 573–644.
  • Ham JH, Melanson RA, Rush MC. Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol. 2011;12:329–339.
  • Lemanceau P. Beneficial effects of rhizobacteria on plants: example of fluorescent Pseudomonas spp. [plant growth promoting rhizobacteria, PGPR, microbial antagonism, siderophore, bacterial inoculation]. Agronomie. 1992;12:413–437.
  • Jung B, Park J, Kim N, et al. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat Commun. 2018;9:31.
  • Daoubi M, Hernández-Galán R, Benharref A, et al. Screening study of lead compounds for natural product-based fungicides: antifungal activity and biotransformation of 6α, 7α-dihydroxy-β-himachalene by Botrytis cinerea. J Agric Food Chem. 2005;53:6673–6677.
  • Russell P. Fungicide resistance: occurrence and management. J Agric Sci. 1995;124:317–323.
  • Knight S, Anthony V, Brady A, et al. Rationale and perspectives on the development of fungicides. Annu Rev Phytopathol. 1997;35:349–372.
  • Brent KJ, Hollomon DW. Fungicide resistance in crop pathogens: how can it be managed? GIFAP Brussels; 1995.
  • Walsh T, Viviani M-A, Arathoon E, et al. New targets and delivery systems for antifungal therapy. Med Mycol. 2000;38:335–347.
  • Pirgozliev SR, Edwards SG, Hare MC, et al. Strategies for the control of Fusarium head blight in cereals. Eur J Plant Pathol. 2003;109:731–742.
  • Park SE, Song JD, Kim KM, et al. Diphenyleneiodonium induces ROS-independent p53 expression and apoptosis in human RPE cells. FEBS Lett. 2007;581:180–186.
  • Dodd ‐o. JM, Zheng G, Silverman HS, et al. Endothelium-independent relaxation of aortic rings by the nitric oxide synthase inhibitor diphenyleneiodonium. Br J Pharmacol. 1997;120:857–864.
  • Sanders SA, Eisenthal R, Harrison R. NADH oxidase activity of human xanthine oxidoreductase-generation of superoxide anion. Eur J Biochem. 1997;245:541–548.
  • Suzuki H, Hatano N, Muraki Y, et al. The NADPH oxidase inhibitor diphenyleneiodonium activates the human TRPA1 nociceptor. Am J Physiol Cell Physiol. 2014;307:C384–C394.
  • Pandey M, Singh AK, Thakare R, et al. Diphenyleneiodonium chloride (DPIC) displays broad-spectrum bactericidal activity. Sci Rep. 2017;7:11521.
  • Ogasawara MA, Zhang H. Redox regulation and its emerging roles in stem cells and stem-like cancer cells. Antioxid Redox Signal. 2009;11:1107–1122.
  • Jacobo-Velázquez DA, Martínez-Hernández GB, del C. Rodríguez S, et al. Plants as biofactories: physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. J Agric Food Chem. 2011;59:6583–6593.
  • Bernards MA, Razem FA. The poly(phenolic) domain of potato suberin: a non-lignin cell wall bio-polymer. Phytochemistry. 2001;57:1115–1122.
  • Razem FA, Bernards MA. Reactive oxygen species production in association with suberization: evidence for an NADPH-dependent oxidase. J Exp Bot. 2003;54:935–941.
  • Cappellini R, Peterson J. Macroconidium formation in submerged cultures by a non-sporulating strain of Gibberella zeae. Mycologia. 1965;57:962–966.
  • Leslie JF, Summerell BA. The Fusarium laboratory manual. Hoboken (NJ): John Wiley & Sons; 2008.
  • Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual. Vol. 545. Cold spring harbor laboratory Cold Spring Harbor, NY; 1982.
  • Kang Y, Kim MR, Kim KH, et al. Chlamydospore induction from conidia of Cylindrocarpon destructans isolated from ginseng in Korea. Mycobiology. 2016;44:63–65.
  • Takemoto D, Tanaka A, Scott B. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol. 2007;44:1065–1076.
  • Hajjar C, Cherrier MV, Mirandela GD, et al. The NOX family of proteins is also present in bacteria. mBio. 2017;8:e01487.
  • Cano-Domínguez N, Álvarez-Delfín K, Hansberg W, et al. NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot Cell. 2008;7:1352–1361.
  • Kashmiri Z, Mankar S. Free radicals and oxidative stress in bacteria. Int J Curr Microbiol App Sci. 2014;3:34–40.
  • Vaughan M, Backhouse D, Ponte ED. Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: a review. World Mycotoxin J. 2016;9:685–700.
  • Schaad NW. Emerging plant pathogenic bacteria and global warming. In: Fatmi M et al., editors. Pseudomonas syringae pathovars and related pathogens–identification, epidemiology and genomics. Dordrecht: Springer; 2008. p. 369–379.
  • Kim K, Lee Y, Ha A, et al. Chemosensitization of Fusarium graminearum to chemical fungicides using cyclic lipopeptides produced by Bacillus amyloliquefaciens strain JCK-12. Front Plant Sci. 2017;8:2010.
  • Sarkar DJ, Mukherjee I, Shakil NA, et al. Antibiotics in agriculture: use and impact. Ind J Ethnophytopharm. 2018;4:4–19.
  • Hollomon D. Does agricultural use of azole fungicides contribute to resistance in the human pathogen Aspergillus fumigatus? Pest Manag Sci. 2017;73:1987–1993.
  • Becher R, Hettwer U, Karlovsky P, et al. Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. Phytopathology. 2010;100:444–453.