2,642
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Fungal Diversity and Enzyme Activity Associated with the Macroalgae, Agarum clathratum

, , ORCID Icon, , & ORCID Icon
Pages 50-58 | Received 23 Oct 2018, Accepted 18 Jan 2019, Published online: 01 Mar 2019

References

  • Kang JW. The geographical distribution of marine algae in Korea. Bull Pusan Fish Coll. 1966;7:1–25.
  • Usov AI, Smirnova GP, Klochkova NG. Polysaccharides of algae: polysaccharide composition of several brown algae from Kamchataka. Russ J Bioorganic Chem. 2001;27:395–399.
  • Kim EJ, Fathoni A, Jeong G-T, et al. Microbacterium oxydans: a novel alginate- and laminarin – degrading bacterium for the reutilization of brown seaweed waste. J Environ Manage. 2013;130:153–159.
  • Jeon YE, Yin X, Lim SS. Antioxidant activities and acetylcholinesterase inhibitory activities from seaweed extracts. J Food Science Nutr. 2012;41:443–449.
  • Park SJ, Min KJ, Park TG. Nutritional characteristics and screening of biological activity of Agarum cribrosum. J Food Science Nutr. 2012;25:842–849.
  • Cho ML, Lee DJ, Kim JK, et al. Molecular characterization and immunomodulatory activity of sulfated fucans from Agarum cribrosum. Carbohydr Polym. 2014;113:507–514.
  • Lapointe BE, Bedford BJ. Drift rhodophyte blooms emerge in Lee County: Florida: USA: evidence of escalating coastal eutrophication. Harmful Algae. 2007;6:421–437.
  • Hu C, Li D, Chen C, et al. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J Geophys Res Oceans. 2013;115:C05017.
  • Hwang EK, Lee SJ, Ha DS, et al. Sargassum golden tides in the Shinan-gun and Jeju Island, Korea. Kor J Fish Aquat Sci. 2016;49:689–693.
  • McMillan JD. Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP, editors. Enzymatic conversion of biomass for fuels production. Washington: DC: American Chemical Society; 1994. p. 292–324.
  • Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18:355–383.
  • Lee SM, Choi IS, Kim SK, et al. Production of bio-ethanol from brown algae by enzymic hydrolysis. Kor Sci Biotechnol Bioeng J. 2009;24:483–488.
  • Jones EBG, Pang KL. Marine fungi and fungal-like organisms. Berlin/Boston: Walter de Gruyter; 2012.
  • Hong JH, Jang S, Heo YM, et al. Investigation of marine derived fungal diversity and their expliotiable biological activities. Marine Drugs. 2015;13:4137–4155.
  • Park MS, Lee S, Oh SY, et al. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. J Microbiol. 2016;54:646–654.
  • Bugni TS, Ireland CM. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep. 2004;21:143–163.
  • Schulz B, Draeger S, Rheinheimer J, et al. Screening strategies for obtaining novel: biologically active: fungal secondary metabolites from marine habitats. Botanica Marina. 2008;51:219–234.
  • Godinho VM, Furbino LE, Santiago IF, et al. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J. 2013;7:1434–1451.
  • Kohlmeyer J. Higher fungi as parasites and symbionts of algae. Veröff Inst Meeresforsch Bremerh. 1974;5:339–356.
  • Visagie CM, Houbraken J, Frisvad JC, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78:343–371.
  • Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker of fungi. Proc Natl Acad Sci USA. 2012;109:6241–6246.
  • Peterson SW, Vega FE, Posada F, et al. Penicillium coffeae: a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. Mycologia. 2005;1:659–666.
  • Huang XL, Gao Y, Xue DQ, et al. Streptomycindole: an indole alkaloid from a marine Streptomyces spp. DA22 associated with South China Sea sponge Craniella australiensis. Helv Chim Acta. 2011;94:1838–1842.
  • Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants: algae and fungi. In: Gelvin SB, Schilperoort RA, editors. Plant Molecular Biology Manual. Netherlands: Springer; 1994. p. 183–190.
  • White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315–322.
  • Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;1:553–556.
  • Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323–1330.
  • O' Donnell K, Cigelnik E, Nirenberg HI. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia. 1998;90:465–493.
  • Park MS, Eom JE, Fong JJ, et al. New record and enzyme activity of four species in Penicillium section Citrina from marine environments in Korea. J Microbiol. 2015;53:219–225.
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780.
  • Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690.
  • Lee H, Lee YM, Heo YM, et al. Halo-tolerance of marine-derived fungi and their enzymatic properties. BioResources. 2015;10:8450–8460.
  • Lee YM, Lee H, Kim GH, et al. Miniaturized enzyme production and development of micro-assays for cellulolytic and xylanolytic enzymes. J Microbiol Methods. 2011;86:124–127.
  • Mabeau S, Fleurence J. Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol. 1993;4:103–107.
  • Raghukumar S. Methods to study marine fungi: in fungi in coastal and oceanic marine ecosystems. Cham: Springer; 2017.
  • Flewelling AJ, Ellsworth KT, Sanford J, et al. Macroalgal endophytes from the Atlantic Coast of Canada: a potential source of antibiotic natural products? Microorganisms. 2013;1:175–187.
  • Furbino LE, Godinho VM, Santiago IF, et al. Diversity patterns: ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol. 2014;67:775–787.
  • Jones EBG, Suetrong S, Sakayaroj J, et al. Classification of marine Ascomycota: Basidiomycota: Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015;73:1–72.
  • Zhang T, Wang NF, Zhang YQ, et al. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden. Svalbard (High Arctic) Sci Rep. 2015;5:14524.
  • Jones EBG, Sakayaroj J, Suetrong S, et al. Classification of marine Ascomycota: anamorphic taxa and Basidiomycota. Fungal Divers. 2009;35:1–187.
  • Suetrong S, Schoch CL, Spatafora JW, et al. Molecular systematics of the marine Dothideomycetes. Stud Mycol. 2009;64:155–173.
  • Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, et al. Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution: diversity and biotechnological potential. Botanica Marina. 2010;53:457–468.
  • Park MS, Lee S, Lim YM. A new record of four Penicillium species isolated from Agarum clathratum in Korea. J Microbiol. 2017;55:237–246.
  • Zuccaro A, Summerbell RC, Gams W, et al. A new Acremonium species associated with Fucus spp and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol. 2004;50:283–297.
  • Zuccaro A, Schoch CL, Spatafora JW, et al. Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol. 2008;74:931–941.
  • Hsieh SY, Moss ST, Jones EBG. Ascoma development in the marine ascomycete Corollospora gracilis (Halosphaeriales: Hypocreomycetidae: Sordariomycetes). Botanica Marina. 2007;50:302–313.
  • Ohzeki T, Mori K. Synthesis of corollosporine, an antibacterial metabolite of the marine fungus Corollospora maritima. Biosci Biotechnol Biochem. 2001;65:172–175.
  • Kubicek CP. Involvement of a conidial endoglucanase and a plasma-membrane-bound β-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei. Microbiol. 1987;133:1481–1487.
  • Wu B, Zhao Y, Gao PJ. Estimation of cellobiohydrolase I activity by numerical differentiation of dynamic ultraviolet spectroscopy. Acta Biochim Biophys Sin (Shanghai). 2006;38:372–378.
  • Burtseva YV, Sova VV, Pivkin MV, et al. Distribution of O-glycosylhydrolases in marine fungi of the Sea of Japan and the Sea of Okhotsk: characterization of exocellular N-acetyl-β-D-glucosaminidase of the marine fungus Penicillium canescens. Appl Biochem Microbiol. 2010;46:648–656.
  • Dinçer A, Telefoncu A. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym. 2007;45:10–14.
  • Tebeka IR, Silva AG, Petri DF. Hydrolytic activity of free and immobilized cellulase. Langmuir. 2009;25:1582–1587.
  • Höller U, Wright AD, Matthee GF, et al. Fungi from marine sponges: diversity: biological activity and secondary metabolites. Mycol Res. 2000;104:1354–1365.
  • Panno L, Bruno M, Voyron S, et al. Diversity: ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanic. N Biotechnol. 2013;30:685–694.
  • Arnosti C, Bell C, Moorhead DL, et al. Extracellular enzymes in terrestrial: freshwater: and marine environments: perspectives on system variability and common research needs. Biogeochem. 2014;117:5–21.