1,821
Views
1
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

The Antiproliferation Activity of Ganoderma formosanum Extracts on Prostate Cancer Cells

, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 219-227 | Received 02 Jan 2019, Accepted 15 Mar 2020, Published online: 15 Apr 2020

References

  • Siegel RL, Miller KD, Fedewa SA et al. Colorectal cancer statistics. CA Cancer J Clin. 2017;67(3):177–193.
  • Huang S-Y, Huang G-J, Wu H-C, et al. Ganoderma tsugae inhibits the SREBP-1/AR axis leading to suppression of cell growth and activation of apoptosis in prostate cancer cells. Molecules. 2018;23(10):2539.
  • Qu L, Li S, Zhuo Y, et al. Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncol Lett. 2017;14(6):7467–7472.
  • Hsu K-D, Cheng K-C. From nutraceutical to clinical trial: frontiers in ganoderma development. Appl Microbiol Biotechnol. 2018;102(21):9037–9051.
  • Wu G-S, Guo J-J, Bao J-L, et al. Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum–a review. Expert Opin Invest Drugs. 2013;22(8):981–992.
  • Johnson BM, Doonan BP, Radwan FF, et al. Ganoderic acid DM: an alternative agent for the treatment of advanced prostate cancer. Open Prost Cancer J. 2010; 3:78–85.
  • Liu J, Shimizu K, Konishi F, et al. The anti-androgen effect of ganoderol B isolated from the fruiting body of Ganoderma lucidum. Bioorg Med Chem. 2007;15(14):4966–4972.
  • Zaidman B-Z, Wasser SP, Nevo E, et al. Androgen receptor-dependent and-independent mechanisms mediate Ganoderma lucidum activities in LNCaP prostate cancer cells. Int J Oncol. 2007;31(4):959–967.
  • Hsu K-D, Chen H-J, Wang C-S, et al. Extract of Ganoderma formosanum mycelium as a highly potent tyrosinase inhibitor. Sci Rep. 2016;6:32854.
  • Hsu K-D, Chan Y-H, Chen H-J, et al. Tyrosinase-based TLC autography for anti-melanogenic drug screening. Sci Rep. 2018;8(1):401.
  • Hsu K-D, Wu S-P, Lin S-P, et al. Enhanced active extracellular polysaccharide production from Ganoderma formosanum using computational modeling. J Food Drug Anal. 2017;25(4):804–811.
  • Zaidman B-Z, Wasser SP, Nevo E, et al. Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells. Mol Biol Rep. 2008;35(2):107–117.
  • Kao CH, Bishop KS, Xu Y, et al. Identification of potential anticancer activities of novel Ganoderma lucidum extracts using gene expression and pathway network analysis. Genomics Insights. 2016;9:GEI. S32477.
  • Wang C-L, Lu C-Y, Hsueh Y-C, et al. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Appl Microbiol Biotechnol. 2014;98(22):9389–9398.
  • Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer: a review. JAMA. 2017;317(24):2532–2542.
  • Zhu M, Zheng Z, Huang J, et al. Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cells. J Cell Biochem. 2019;120(9):15616–15624.
  • Cao Y, Xu X, Liu S, et al. Ganoderma: a cancer immunotherapy review. Front Pharmacol. 2018;9:1217.
  • Zhang JH, Xu M. DNA fragmentation in apoptosis. Cell Res. 2000;10(3):205–211.
  • Ouyang L, Shi Z, Zhao S, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487–498.
  • Hsin I-L, Ou C-C, Wu M-F, et al. GMI, an immunomodulatory protein from Ganoderma microsporum, potentiates cisplatin-induced apoptosis via autophagy in lung cancer cells. Mol Pharmaceutics. 2015;12(5):1534–1543.
  • Dan X, Liu W, Wong JH, et al. A ribonuclease isolated from wild Ganoderma lucidum suppressed autophagy and triggered apoptosis in colorectal cancer cells. Front Pharmacol. 2016;7:217.
  • Takahashi A, Kimura F, Yamanaka A, et al. Metformin impairs growth of endometrial cancer cells via cell cycle arrest and concomitant autophagy and apoptosis. Cancer Cell Int. 2014;14(1):53.
  • Smith ML, Murphy K, Doucette CD, et al. The dietary flavonoid fisetin causes cell cycle arrest, caspase-dependent apoptosis, and enhanced cytotoxicity of chemotherapeutic drugs in triple-negative breast cancer cells. J Cell Biochem. 2016;117(8):1913–1925.
  • Sherr CJ, Bartek J. Cell cycle–targeted cancer therapies. Annu Rev Cancer Biol. 2017;1(1):41–57.
  • Gudas JM, Payton M, Thukral S, et al. Cyclin E2, a novel G(1) cyclin that binds Cdk2 and is aberrantly expressed in human cancers. Mol Cell Biol. 1999;19(1):612–622.
  • Bolognese F, Wasner M, Dohna CL, et al. The cyclin B2 promoter depends on NF-Y, a trimer whose CCAAT-binding activity is cell-cycle regulated. Oncogene. 1999;18(10):1845–1853.
  • Gong D, Ferrell JE. The roles of cyclin A2, B1, and B2 in early and late mitotic events. Mol Biol Cell. 2010;21(18):3149–3161.