1,453
Views
7
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Characterization of Amylolytic Activity by a Marine-Derived Yeast Sporidiobolus pararoseus PH-Gra1

, , , &
Pages 195-203 | Received 02 Jan 2020, Accepted 26 Apr 2020, Published online: 21 May 2020

References

  • Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol. 2012;3:421.
  • Hyde KD, Jones EBG, Leano EM, et al. Role of fungi in marine ecosystems. Biodivers Conserv. 1998;7(9):1147–1161.
  • Higgins R. Bacteria and fungi of marine mammals: a review. Can Vet J. 2000;41(2):105–116.
  • Wang WL, Chi ZM, Chi Z, et al. Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresour Technol. 2009;100(9):2639–2641.
  • Wang L, Chi Z, Wang X, et al. Isolation and characterization of Candida membranifaciens subsp. flavinogenie W14-3, a novel riboflavin-producing marine yeast. Microbiol Res. 2008;163(3):255–266.
  • Apte M, Sambre D, Gaikawad S, et al. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express. 2013;3(1):32.
  • Kathiresan K, Saravanakumar , Senthilraja KP. Bio-ethanol production by marine yeasts isolated from coastal mangrove sediment. Int Multidiscip Res J. 2011;1:19–24.
  • Chi Z, Chi Z, Zhang T, et al. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv. 2009;27(3):236–255.
  • Duarte AWF, Dayo-Owoyemi I, Nobre F, et al. Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles. 2013;17(6):1023–1035.
  • Pedersen H, Nielsen J. The influence of nitrogen sources on the alpha-amylase productivity of Aspergillus oryzae in continuous cultures. Appl Microbiol Biotechnol. 2000;53(3):278–281.
  • Uguru GC, Akinyanju JA, Sani A. The use of yam peel for growth of locally isolated Aspergillus niger and amylase production. Enzyme Microb Technol. 1997;21(1):48–51.
  • Clementi F, Rossi J. Alpha-amylase and glucoamylase production by Schwanniomyces castellii. Antonie Van Leeuwenhoek. 1986;52(4):343–352.
  • Mot R, Verachtert H. Purification and characterization of extracellular alpha-amylase and glucoamylase from the yeast Candida antarctica CBS 6678. Eur J Biochem. 1987;164(3):643–654.
  • De Mot R, Verachtert H. Purification and characterization of extracellular amylolytic enzymes from the yeast Filobasidium capsuligenum. Appl Environ Microbiol. 1985;50(6):1474–1482.
  • Moranelli F, Yaguchi M, Calleja GB, et al. Purification and characterization of the extracellular alpha-amylase activity of the yeast Schwanniomyces alluvius. Biochem Cell Biol. 1987;65(10):899–908.
  • Spencer-Martins I, Uden N. Extracellular amylolytic system of the yeast Lipomyces kononenkoae. Eur J Appl Microbiol Biotechnol. 1979;6(3):241–250.
  • Takeuchi A, Shimizu-Ibuka A, Nishiyama Y, et al. Purification and characterization of an alpha-amylase of Pichia burtonii isolated from the traditional starter “murcha” in Nepal. Biosci Biotechnol Biochem. 2006;70(12):3019–3024.
  • Li H, Chi Z, Wang X, et al. Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme Microb Technol. 2007;40(5):1006–1012.
  • Chung D, Baek K, Bae SS, et al. Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2-2. J Microbiol. 2019;57(5):372–380.
  • Hankin L, Anagnostakis SL. The use of solid media for detection of enzyme production by fungi. Mycologia. 1975;67(3):597–607.
  • Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek. 1998;73(4):331–371.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248–254.
  • Bai FY, Zhao JH, Takashima M, et al. Reclassification of the Sporobolomyces roseus and Sporidiobolus pararoseus complexes, with the description of Sporobolomyces phaffii sp. nov. Int J Syst Evol Microbiol. 2002;52(6):2309–2314.
  • Libkind D, Gadanho M, van Broock M, Sampaio JP. Sporidiobolus longiusculus sp. nov. and Sporobolomyces patagonicus sp. nov., novel yeasts of the Sporidiobolales isolated from aquatic environments in Patagonia, Argentina. Int J Syst Evol Microbiol. 2005;55(1):503–509.
  • Hong SG, Lee KH, Bae KS. Diversity of yeasts associated with natural environments in Korea. J Microbiol. 2002;40:55–62.
  • Chaiyaso T, Manowattana A. Enhancement of carotenoids and lipids production by oleaginous red yeast Sporidiobolus pararoseus KM281507. Prep Biochem Biotechnol. 2018;48(1):13–23.
  • Chaiyaso T, Srisuwan W, Techapun C, et al. Direct bioconversion of rice residue from canteen waste into lipids by new amylolytic oleaginous yeast Sporidiobolus pararoseus KX709872. Prep Biochem Biotechnol. 2018;48(4):361–371.
  • Mase T, Sonoda M, Morita M, et al. Characterization of a lipase from Sporidiobolus pararoseus 25-A which produces cheese flavor. Food Res Technol Res. 2010;17(1):17–20.
  • Djekrif DS, Gillmann L, Bennamoun L, et al. Amylolytic yeasts: producers of alpha-amylase and pullulanase. Int J Life Sci Scienti Res. 2016;2:339–354.
  • Pavezzi FC, Gomes E, Silva R. d. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources. Braz J Microbiol. 2008;39(1):108–114.
  • Bilderback DE. A Simple Method to Differentiate between alpha- and beta-Amylase. Plant Physiol. 1973;51(3):594–595.
  • Sharma A, Satyanarayana T. Microbial acid-stable alpha-amylase: characteristics, genetic engineering and applications. Process Biochem. 2013;48(2):201–211.