1,457
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Alterations in Growth and Morphology of Ganoderma lucidum and Volvariella volvaceae in Response to Nanoparticle Supplementation

, ORCID Icon & ORCID Icon
Pages 383-391 | Received 30 Mar 2020, Accepted 06 Aug 2020, Published online: 27 Aug 2020

References

  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian J Chem. 2019;12(7):908–931.
  • Tratnyek PG, Johnson RL. Nanotechnologies for environmental cleanup. Nanotoday. 2006;1(2):44–48.
  • Inshakova E, Inshakov O. World market for nanomaterials: structure and trends. MATEC Web Conf ICMTMTE. 2017;129:02013.
  • Jeevanandam J, Barhoum A, Chan YS, et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–1074.
  • Maynard AD, Aitken RJ, Butz T, et al. Safe handling of nanotechnology. Nature. 2006;444(7117):267–269.
  • Huan C, Shu-Qing S. Silicon nanoparticles: preparation, properties, and applications. Physical Biol. 2015;46(39):no–14.
  • Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. AAPPS Bull. 2007;17(6):12–28.
  • Fujioka K, Hiruoka M, Sato K, et al. Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnol. 2008;19(41):1–7.
  • Wiesner MR, Lowry GV, Alvarez P, et al. Assessing the risks of manufactured nanomaterials. Environ Sci Technol. 2006;40(14):4336–4345.
  • Baldrian P. Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol. 2008;1(1):4–12.
  • Gianfreda L, Xu F, Bollag JM. Laccases: a useful group of oxidoreductive enzymes. Bioremediation J. 1999;3(1):1–26.
  • Baldrian P. Effect of heavy metals on saprotrophic soil fungi. In: Sherameti I, Varma A, editors. Soil heavy metals. Berlin (Heidelberg): Springer-Verlag 2010. p. 263–279.
  • Amdekar S. Ganoderma lucidum (Reishi): source of pharmacologically active compounds. Curr Sci. 2016;111(6):976–978.
  • Bozzola JJ, Russell LD. Electron microscopy: principles and techniques for biologists. Boston; Jones & Bartlett; 1999.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Laemmli UK, Molbert E, Showe M, et al. Form-determining function of the genes required for the assembly of the head of bacteriophage T4. J Mol Biol. 1970;49(1):99–113.
  • Turner EM. Phenoloxidase activity in relation to substrate and developmental stage in mushroom Agaricus biosporus. Trans Br Mycol Sociol. 1974;63(3):541–547.
  • Singh RP, Garcha HS, Khanna PK. Laccase production by Pleurotus spp. Indian J Microbiol. 1988;28:38–41.
  • Dhaliwal MS, Jindal SK, Dhaliwal LK, et al. Growth and yield of tomato influenced by condition of culture, mulch and planting date. Intl J Veg Sci. 2017;23(1):4–17.
  • Goyal A, Kalia A, Sodhi HS. Selenium stress in Ganoderma lucidum: a scanning electron microscopy appraisal. Afr J Microbiol Res. 2015;9(12):855–862.
  • Baldrian P. Fungal laccases – occurrence and properties. FEMS Microbiol Rev. 2006;30(2):215–242.
  • Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol. 2003;32(1):78–91.
  • Galhaup C, Haltrich D. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol. 2001;56(1–2):225–232.
  • Tychanowicz GK, de Souza DF, Souza CGM, et al. Copper improves the production of laccase by the white-rot fungus Pleurotus pulmonarius in solid state fermentation. Braz Arch Biol Technol. 2006;49(5):699–704.
  • Baldrian P, Gabriel J. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett. 2002;206(1):69–74.
  • Guo S, Li H, Yang J, et al. Visible-light-induced effects of Au nanoparticle on laccase catalytic activity. ACS Appl Mater Interfaces. 2015;7(37):20937–20944.