2,098
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Cordycepin from Medicinal Fungi Cordyceps militaris Mitigates Inflammaging-Associated Testicular Damage via Regulating NF-κB/MAPKs Signaling in Naturally Aged Rats

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 86-95 | Received 16 Nov 2021, Accepted 26 Jan 2022, Published online: 17 Feb 2022

References

  • Frungieri MB, Calandra RS, Bartke A, et al. Ageing and inflammation in the male reproductive tract. Andrologia. 2018;50(11):e13034.
  • Xia S, Zhang X, Zheng S, et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016; 2016:8426874–8426812.
  • Corona G, Rastrelli G, Maseroli E, et al. Sexual function of the ageing male. Best Pract Res Clin Endocrinol Metab. 2013;27(4):581–601.
  • Costa C, Albersen M. Erectile dysfunction in inflammaging. In: Bagchi BR, editor. Inflammation, advancing age and nutrition. The Netherlands: Elsevier; 2014. p. 287–295.
  • Krause W. Male accessory gland infection. Andrologia. 2008;40(2):113–116.
  • Rusz A, Pilatz A, Wagenlehner F, et al. Influence of urogenital infections and inflammation on semen quality and male fertility. World J Urol. 2012;30(1):23–30.
  • Jiang H, Zhu W-J, Li J, et al. Quantitative histological analysis and ultrastructure of the aging human testis. Int Urol Nephrol. 2014;46(5):879–885.
  • Sibert L, Lacarrière E, Safsaf A, et al. Aging of the human testis. Presse Med. 2014;43(2):171–177.
  • Azenabor A, Ekun AO, Akinloye O. Impact of inflammation on male reproductive tract. J Reprod Infertil. 2015;16:123–129.
  • Koppula S, Akther M, Haque ME, et al. Potential nutrients from natural and synthetic sources targeting inflammaging—a review of literature, clinical data and patents. Nutrients. 2021;13(11):4058.
  • Radhi M, Ashraf S, Lawrence S, et al. A systematic review of the biological effects of cordycepin. Molecules. 2021;26(19):5886.
  • Olatunji OJ, Tang J, Tola A, et al. The genus Cordyceps: an extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia. 2018;129:293–316.
  • Lee C-T, Huang K-S, Shaw J-F, et al. Trends in the immunomodulatory effects of Cordyceps militaris: total extracts, polysaccharides and cordycepin. Front Pharmacol. 2020;11:575704.
  • Wang Z, Chen Z, Jiang Z, et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat Commun. 2019;10(1):2538.
  • Xu J-C, Zhou X-P, Wang X-A, et al. Cordycepin induces apoptosis and G2/M phase arrest through the ERK pathways in esophageal cancer Cells. J Cancer. 2019;10(11):2415–2424.
  • Jin Y-T, Qi Y-Q, Jin M, et al. Synthesis, antitumor and antibacterial activities of cordycepin derivatives. J Asian Nat Prod Res. 2021;1–11.
  • Govindula A, Pai A, Baghel S, et al. Molecular mechanisms of cordycepin emphasizing its potential against neuroinflammation: an update. Eur J Pharmacol. 2021;908:174364.
  • Choi YH, Kim G-Y, Lee HH. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways. Drug Des Dev Ther. 2014;8:1941.
  • Shin S, Lee S, Kwon J, et al. Cordycepin suppresses expression of diabetes regulating genes by inhibition of lipopolysaccharide-induced inflammation in macrophages. Immune Netw. 2009;9(3):98–105.
  • Jo WS, Choi YJ, Kim HJ, et al. The anti-inflammatory effects of water extract from Cordyceps militaris in murine macrophage. Mycobiology. 2010;38(1):46–51.
  • Verma AK. Cordycepin: a bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. J Biomol Struct Dyn. 2020;1–8. DOI:https://doi.org/10.1080/07391102.2020.1850352
  • Verma AK, Aggarwal R. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chem Biol Drug Des. 2021;97(4):836–853.
  • Chen Y-C, Chen Y-H, Pan B-S, et al. Functional study of Cordyceps sinensis and cordycepin in male reproduction: a review. J Food Drug Anal. 2017;25(1):197–205.
  • Chang Y, Jeng K-C, Huang K-F, et al. Effect of Cordyceps militaris supplementation on sperm production, sperm motility and hormones in Sprague-Dawley rats. Am J Chin Med. 2008;36(5):849–859.
  • Ramesh T, Yoo S-K, Kim S-W, et al. Cordycepin (3'-deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats. Exp Gerontol. 2012;47(12):979–987.
  • Kopalli SR, Cha K-M, Lee S-H, et al. Cordycepin, an active constituent of nutrient powerhouse and potential medicinal mushroom Cordyceps militaris linn., ameliorates age-related testicular dysfunction in rats. Nutrients. 2019;11(4):906.
  • Kopalli SR, Cha K-M, Ryu J-H, et al. Korean red ginseng improves testicular ineffectiveness in aging rats by modulating spermatogenesis-related molecules. Exp Gerontol. 2017; 90:26–33.
  • Won Y-J, Kim B, Shin Y-K, et al. Pectinase-treated panax ginseng extract (GINST) rescues testicular dysfunction in aged rats via redox-modulating proteins. Exp Gerontol. 2014;53:57–66.
  • Berdasco M, Esteller M. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell. 2012;11(2):181–186.
  • Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–236.
  • Chung E. Sexuality in ageing male: review of pathophysiology and treatment strategies for various male sexual dysfunctions. Med Sci. 2019; 7:98.
  • Corona G, Rastrelli G, Maggi M. Diagnosis and treatment of late-onset hypogonadism: systematic review and meta-analysis of TRT outcomes. Best Pract Res Clin Endocrinol Metab. 2013;27(4):557–579.
  • Sengupta P. The laboratory rat: relating its age with humans. Int J Prev Med. 2013;4(6):624–630.
  • Takahashi S, Tamai M, Nakajima S, et al. Blockade of adipocyte differentiation by cordycepin. Br J Pharmacol. 2012;167(3):561–575.
  • Kubota K, Shirakura T, Orui T, et al. Changes in the blood cell counts with aging. Nihon Ronen Igakkai Zasshi. 1991;28(4):509–514.
  • Valiathan R, Ashman M, Asthana D. Effects of ageing on the immune system: Infants to elderly. Scand J Immunol. 2016;83(4):255–266.
  • Kounis NG, Soufras GD, Tsigkas G, et al. White blood cell counts, leukocyte ratios, and eosinophils as inflammatory markers in patients with coronary artery disease. Clin Appl Thromb Hemost. 2015;21(2):139–143.
  • Mardi D, Fwity B, Lobmann R, et al. Mean cell volume of neutrophils and monocytes compared with C-reactive protein, interleukin-6 and white blood cell count for prediction of sepsis and nonsystemic bacterial infections. Int J Lab Hematol. 2010;32:410–418.
  • Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8:1960.
  • Mehta JL, Saldeen TG, Rand K. Interactive role of infection, inflammation and traditional risk factors in atherosclerosis and coronary artery disease. J Am Coll Cardiol. 1998;31(6):1217–1225.
  • Alexander RW. Inflammation and coronary artery disease. N Engl J Med. 1994;331(7):468–469.
  • Mahady SE, Wong G, Turner RM, et al. Elevated liver enzymes and mortality in older individuals: a prospective cohort study. J Clin Gastroenterol. 2017;51(5):439–445.
  • Kim IH, Kisseleva T, Brenner DA. Aging and liver disease. Curr Opin Gastroenterol. 2015;31(3):184–191.
  • Franceschi C, Garagnani P, Morsiani C, et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne). 2018;5:61.
  • Franceschi C, Garagnani P, Parini P, et al. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–590.
  • Fulop T, Witkowski JM, Pawelec G, et al. On the immunological theory of aging. Interdiscip Top Gerontol. 2014; 39:163–176.
  • Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des. 2009;15(26):3003–3026.
  • Matzkin ME, Mayerhofer A, Rossi SP, et al. Cyclooxygenase-2 in testes of infertile men: evidence for the induction of prostaglandin synthesis by interleukin-1β. Fertil Steril. 2010;94(5):1933–1936.
  • Syntin P, Chen H, Zirkin BR, et al. Gene expression in brown Norway rat leydig cells: effects of age and of age-related germ cell loss. Endocrinology. 2001;142(12):5277–5285.
  • Hales DB. Regulation of leydig cell function as it pertains to the inflammatory response. In Payne AH, Hardy MPH, editors. The Leydig cell in health and disease. Totowa (NJ): Humana Press; 2007. p. 117–131.
  • Wang Y, Yang Z, Yang L, et al. Liuweidihuang pill alleviates inflammation of the testis via AMPK/SIRT1/NF-κ B pathway in aging rats. Evid Based Complem Altern Med. 2020;2020:1–9.
  • Wang Z, Chen L, Qiu Z, et al. Ginsenoside Rg1 ameliorates testicular senescence changes in D-gal-induced aging mice via anti-inflammatory and antioxidative mechanisms. Mol Med Rep. 2018;17(5):6269–6276.
  • Agarwal A. NF-κB in male reproduction: a boon or a bane? TORSJ. 2011;3(1):85–91.
  • Zhao X, Bian Y, Sun Y, et al. Effects of moderate exercise over different phases on age-related physiological dysfunction in testes of SAMP8 mice. Exp Gerontol. 2013;48(9):869–880.
  • Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000; 18:621–663.
  • Lu L, Wu C, Lu B, et al. BabaoDan cures hepatic encephalopathy by decreasing ammonia levels and alleviating inflammation in rats. J Ethnopharmacol. 2020;249:112301.
  • Chen X, Zhang C, Wang X, et al. Juglanin inhibits IL-1β-induced inflammation in human chondrocytes. Artif Cells Nanomed Biotechnol. 2019;47(1):3614–3620.
  • Wang X, Martindale JL, Liu Y, et al. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J. 1998;333(2):291–300.
  • Xia Z, Dickens M, Raingeaud J. L, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995;270(5240):1326–1331.
  • Li MWM, Mruk DD, Cheng CY. Mitogen-activated protein kinases in male reproductive function. Trends Mol Med. 2009;15(4):159–168.
  • Urriola-Muñoz P, Lagos-Cabré R, Moreno RD. A mechanism of male germ cell apoptosis induced by Bisphenol-A and nonylphenol involving ADAM17 and p38 MAPK activation. PLoS One. 2014;9(12):e113793.
  • Peretz J, Vrooman L, Ricke WA, et al. Bisphenol a and reproductive health: Update of experimental and human evidence, 2007-2013. Environ Health Perspect. 2014;122(8):775–786.
  • Lee YS, Yoon H-J, Oh J-H, et al. 1,3-Dinitrobenzene induces apoptosis in TM4 mouse sertoli cells: Involvement of the c-Jun N-terminal kinase (JNK) MAPK pathway. Toxicol Lett. 2009;189(2):145–151.
  • Liu X, Nie S, Chen Y, et al. Effects of 4-nonylphenol isomers on cell receptors and mitogen-activated protein kinase pathway in mouse sertoli TM4 cells. Toxicology. 2014; 326:1–8.
  • Zhen X, Uryu K, Cai G, et al. Age-Associated impairment in brain MAPK signal pathways and the effect of caloric restriction in fischer 344 rats. J Gerontol Ser A: Biol Sci Med Sci. 1999;54(12):B539–B548.
  • Kim M, Kim JH, Jeong GJ, et al. Particulate matter induces pro-inflammatory cytokines via phosphorylation of p38 MAPK possibly leading to dermal inflammaging. Exp Dermatol. 2019;28(7):809–815.