1,879
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Two New Species and Three New Records of Ascomycetes in Korea

, , &
Pages 30-45 | Received 04 Oct 2021, Accepted 02 Feb 2022, Published online: 24 Feb 2022

References

  • Naranjo-Ortiz MA, Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc. 2019;94(6):2101–2137.
  • Wijayawardene NN, Hyde KD, Al-Ani LKT, et al. Outline of fungi and fungus-like taxa. Mycosphere. 2020;11(1):1060–1456.
  • Kirk PM, Cannon PF, Minter DW, et al. Ainsworth and Bisby’s dictionary of the Fungi. 10th ed. Wallingford: CAB International; 2008.
  • Hongsanan S, Hyde KD, Phookamsak R, et al. Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere. 2020;11(1):1553–2107.
  • McKenzie E, Jones EBG, Hyde KD. Taxonomy and phylogeny of Dothideomycetes. Phytotaxa. 2014;176(1):5–6.
  • Jones EBG, Devadatha B, Abdel-Wahab MA, et al. Phylogeny of new marine Dothideomycetes and Sordariomycetes from mangroves and deep-sea sediments. Botanica Marina. 2020;63(2):155–181.
  • Turgeon BG, Baker SE. Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin. Adv Genet. 2007;57:219–261.
  • Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, et al. Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola). Mycologia. 2012;104(6):1397–1407.
  • Haridas S, Albert R, Binder M, et al. 101 Dothideomycetes genomes: a test case for predicting lifestyles and emergence of pathogens. Stud Mycol. 2020;96:141–153.
  • Ohm RA, Feau N, Henrissat N, et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog. 2012;8(12):e1003037.
  • Hyde KD, Nilsson RH, Alias SA, et al. One stop shop: backbones trees for important phytopathogenic genera: I. Fungal Divers. 2014;67(1):121–125.
  • Hyde KD, Norphanphoun C, Maharachchikumbura SSN, et al. Refined families of Sordariomycetes. Mycosphere. 2020;11(1):305–1059.
  • Zhang N, Castlebury LA, Miller AN, et al. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia. 2006;98(6):1076–1087.
  • Maharachchikumbura SSN, Hyde KD, Jones EBG, et al. Families of Sordariomycetes. Fungal Divers. 2016;79(1):1–317.
  • Luo Z-L, Hyde KD, Liu JKJ, et al. Freshwater Sordariomycetes. Fungal Divers. 2019;99(1):451–660.
  • Błaszczyk L, Siwulski M, Sobieralski K, et al. Trichoderma spp. – application and prospects for use in organic farming and industry. J Plant Prot Res. 2014;54(4):309–317.
  • Hyde KD, Xu J, Rapior S, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019;97(1):1–136.
  • Dannon HF, Dannon AE, Douro-Kpindou OK, et al. Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. J Cotton Res. 2020;3(1):24.
  • Gangadevi V, Muthumary J. Taxol, an anticancer drug produced by an endophytic fungus B. robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol. 2008;24(5):717–724.
  • Hawksworth DL. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res. 1991;95(6):641–655.
  • Hawksworth DL, Lücking R. Fungal diversity revisited 2.2 to 3.8 million species. Microbiol Spectr. 2017;5(4):FUNK-0052-2016.
  • Shearer CA, Descals E, Kohlmeyer B, et al. Fungal biodiversity in aquatic habitats. Biodivers Conserv. 2007;16(1):49–67.
  • Jones EBG, Hyde KD, Pang KL. Freshwater fungi and fungal-Like organisms. Boston (MA): De Gruyter; 2014.
  • El-Elimat T, Raja HA, Figueroa M, et al. Freshwater fungi as a source of chemical diversity: a review. J Nat Prod. 2021;84(3):898–916.
  • Deshmukh SK, Prakash V, Ranjan N. Marine fungi: a source of potential anticancer compounds. Front Microbiol. 2017;8:2536–2560.
  • Schulz B, Boyle C, Draeger S, et al. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res. 2002;106(9):996–1004.
  • Manganyi MC, Ateba CN. Untapped potentials of endophytic fungi: a review of novel bioactive compounds with biological applications. Microorganisms. 2020;8(12):1934.
  • Nguyen TTT, Lee SH, Jeon SJ, et al. First records of rare Ascomycete fungi, Acrostalagmus luteoalbus, Bartalinia robillardoides, and Collariella carteri from freshwater samples in Korea. Mycobiology. 2019;47(1):1–17.
  • Eo J-K, Park H, Eom A-H. Diversity of endophytic fungi isolated from Pinus densiflora and Juniperus rigida distributed in Mt. Baekryeonsan and Mt. Johangsan, Korea. K J Mycol. 2018;46:437–446.
  • Goh J, Mun HJ, Jeon Y-J, et al. First report of six Sordariomycetes fungi isolated from plant litter in freshwater ecosystems of. Korea. K J Mycol. 2020;48:103–116.
  • Lim HJ, Nguyen TTT, Lee HB. Six newly recorded fungal taxa from freshwater niche in Korea. Mycobiology. 2021;49(2):105–121.
  • Nguyen TTT, Frisvad JC, Kirk PM, et al. Discovery and extrolite production of three new species of Talaromyces belonging to sections Helici and Purpurei from freshwater in Korea. JoF. 2021;7(9):722.
  • White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315–322.
  • Bunyard BA, Nicholson MS, Royse DJ. A systematic assessment of Morchella using RFLP analysis of the 28S ribosomal RNA gene. Mycologia. 1994;86(6):762–772.
  • Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238–4246.
  • Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol. 1999;16(12):1799–1808.
  • Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553–556.
  • Nguyen TTT, Voigt K, Santiago ALC, et al. Discovery of novel Backusella (Backusellaceae, Mucorales) isolated from invertebrates and toads in Cheongyang, Korea. JoF. 2021;7(7):513.
  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973.
  • Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–542.
  • Rambaut A. FigTree, Version 1.3. 1. Computer Program Distributed by the Author. 2009.
  • Verkley GJM, da Silva M, Wicklow DT, et al. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud Mycol. 2004;50:323–335.
  • Hernández-Restrepo M, Schumacher RK, Wingfield MJ, et al. Fungal systematics and evolution: FUSE 2. Sydowia. 2016;68:193–230.
  • Zhdanova NN. Rare and new species of Dematiaceae isolated from maize rhizosphere of various climatic belts of the Ukrainian SSR. Mykrobiologichnyi Zhurnal Kiev. 1966;28(1):36–40.
  • Gräfenhan T, Schroers H-J, Nirenberg HI, et al. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud Mycol. 2011;68:79–113.
  • Zeng Z-Q, Zhuang W-Y. A new species of Cosmospora and the first record of sexual state of C. lavitskiae. Mycol Prog. 2016;15:59.
  • Miles LE. New species of fungi from Mississippi. Mycologia. 1926;18(4):163–168.
  • Liu F, Bonthond G, Groenewald JZ, et al. Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Stud Mycol. 2019;92:287–415.
  • Thambugala KM, Wanasinghe DN, Phillips AJL, et al. Mycosphere notes 1-50: Grass (Poaceae) inhabiting Dothideomycetes. Mycosphere. 2017;8(4):697–796.
  • Wijayawardene NN, Hyde KD, Bhat DJ, et al. Camarosporium–like species are polyphyletic in Pleosporales; introducing Paracamarosporium and Pseudocamarosporium gen. nov. in Montagnulaceae. Cryptogam Mycol. 2014;35(2):177–198.
  • Crous PW, Schumacher RK, Wingfield MJ, et al. Fungal systematics and evolution: FUSE 1. Sydowia. 2015;67:81–118.
  • Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers. 2016;77(1):1–316.
  • Thambugala KM, Daranagama DA, Phillips AJL, et al. Microfungi on Tamarix. Fungal Divers. 2017;82(1):239–306.
  • Crous PW, Groenewald JZ. The genera of fungi - G 4: Camarosporium and Dothiora. IMA Fungus. 2017;8(1):131–152.
  • Pelo SP, Adebo OA, Green E. Chemotaxonomic profiling of fungal endophytes of Solanum mauritianum (alien weed) using gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). Metabolomics. 2021;17(5):43.
  • Persoon CH. Traite sur les champignons comestibles, contenant l'indication des espe ces nuisibles; a l'histoire des champignons. Paris: Belin-Leprieur; 1818.
  • van der Aa HA. Studies in Phyllosticta I. Stud Mycol. 1973;5:1–110.
  • Glienke-Blanco C, Aguilar-Vildoso CI, Vieira MLC, et al. Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Genet Mol Biol. 2002;25(2):251–255.
  • Wikee S, Udayanga D, Crous PW, et al. Phyllosticta: an overview of current status of species recognition. Fungal Divers. 2011;51(1):43–61.
  • Wikee S, Lombard L, Nakashima C, et al. A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales). Stud Mycol. 2013;76(1):1–29.
  • Wikee S, Lombard L, Crous PW, et al. Phyllosticta capitalensis, a widespread endophyte of plants. Fungal Divers. 2013;60(1):91–105.
  • Lee B-H, Kim D-Y, Park H, et al. Identification of unrecorded endophytic fungi isolated from leaves of woody plants in Jejudo, Korea. K J Mycol. 2016;44(4):252–258.
  • Rabenhorst L. Algen Europa’s, fortsetzung der algen sachsens, resp. Mittel-Europa’s. Dec 29–30. Nos 1281–1300. Dresden. 1862.
  • Rossman AY, Samuels GJ, Rogerson CT, et al. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Stud Mycol. 1999;49:1–248.
  • Allescher A. Fungi imperfecti: gefärbt-sporige sphaerioideen. In: Rabenhorst’s Kryptogamen-Flora von Deutschland. Österreichund der Schweiz. 2nd ed. Leipzig: Kummer; 1902. p. 65–128.
  • De Silva NI, Phookamsak R, Maharachchikumbura SSN, et al. Monochaetia ilexae sp. nov. (Pestalotiopsidaceae) from Yunnan Province in China. Phytotaxa. 2017;291(2):123–132.
  • Subramaniam Y, Subbiah R, Balan L, et al. Bioprospecting of bioactive metabolites from Monochaetia karsteni. J Pure Appl Microbiol. 2020;14(2):1557–1566.
  • Zhao J, Zhou L, Wang J. Endophytic fungi for producing bioactive compounds originally from their host plants. In: Mendez-Vilas dA, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz: Formatex Research Center; 2011. p. 567–576.
  • Saccardo PA, Paoletti G. Mycetes malacenses. Funghi della penisola di malacca raccolti nel 1885 dell. Ab Benedetto Scortechini. 1888;6:387–428.
  • Hyde KD, Eriksson OE, Yue JZ. Roussoëlla, an ascomycete genus of uncertain relationships with a Cytoplea anamorph. Mycol Res. 1996;100(12):1522–1528.
  • Zhang J-YI, Phookamsak R, Boonmee S, et al. Roussoella guttulata (Roussoellaceae, Pleosporales), a novel bambusicolous ascomycete from Thailand. Phytotaxa. 2020;471(3):221–233.
  • Phookamsak R, Hyde KD, Rajesh Jeewon R, et al. Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers. 2019;95(1):1–273.
  • Liu J-K, Phookamsak R, Dai D-Q, et al. Roussoellaceae, a new pleosporalean family to accommodate the genera Neoroussoella gen. nov., Roussoella and Roussoellopsis. Phytotaxa. 2014;181(1):1–33.
  • Poli A, Bovio E, Ranieri L, et al. News from the sea: a new genus and seven new species in the Pleosporalean families Roussoellaceae and Thyridariaceae. Diversity. 2020;12(4):144.
  • Timnick MB, Lilly VG, Barnett HL. The effect of nutrition on the sporulation of Melanconium fuligineum in culture. Mycologia. 1951;43(6):625–634.
  • Su Y-Y, Qi Y-L, Cai L. Induction of sporulation in plant pathogenic fungi. Mycology. 2012;3:195–200.
  • Engelkes C, Nuclo R, Fravel D. Effect of carbon, nitrogen, and C: N ratio on growth, sporulation, and biocontrol efficacy of Talaromyces flavus. Phytopathology. 1997;87(5):500–505.
  • Gao L, Liu X. Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system. J Microbiol. 2010;48(6):767–770.