440
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Long-Term Investigation of Marine-Derived Aspergillus Diversity in the Republic of Korea

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 436-444 | Received 08 Aug 2023, Accepted 31 Oct 2023, Published online: 20 Nov 2023

References

  • Samson RA, Pitt JI. Integration of modern taxonomic methods for Penicillium and Aspergillus classification. FL: CRC Press; 2000.
  • Kocsubé S, Perrone G, Magistà D, et al. Aspergillus is monophyletic: evidence from multiple gene phylogenies and extrolites profiles. Stud Mycol. 2016;85(1):199–213. doi: 10.1016/j.simyco.2016.11.006.
  • Steenwyk JL, Shen X-X, Lind AL, et al. A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. MBio. 2019;10(4):e00925–19. doi: 10.1128/mBio.00925-19.
  • Houbraken J, Kocsubé S, Visagie CM, et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol. 2020;95:5–169. doi: 10.1016/j.simyco.2020.05.002.
  • de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev. 2001;65(4):497–522. doi: 10.1128/MMBR.65.4.497-522.2001.
  • Hrmová M, Biely P, Vrs˘anská M, et al. Cellulose- and xylan-degrading enzymes of Aspergillus terreus and Aspergillus niger. Enzyme Microb Technol. 1989;11(9):610–616. doi: 10.1016/0141-0229(89)90090-2.
  • Planchot V, Colonna P, Gallant DJ, et al. Extensive degradation of native starch granules by alpha-amylase from Aspergillus fumigatus. J Cereal Sci. 1995;21(2):163–171. doi: 10.1016/0733-5210(95)90032-2.
  • Scheckermann C, Wagner F, Fischer L, et al. Galactosylation of antibiotics using the β-galactosidase from Aspergillus oryzae. Enzyme Microb Technol. 1997;20(8):629–634. doi: 10.1016/S0141-0229(96)00211-6.
  • Yang L, Lübeck M, Lübeck PS, et al. Aspergillus as a versatile cell factory for organic acid production. Fungal Biol Rev. 2017;31(1):33–49. doi: 10.1016/j.fbr.2016.11.001.
  • El-Hawary SS, Moawad AS, Bahr HS, et al. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 2020;10(37):22058–22079. doi: 10.1039/d0ra04290k.
  • Hedayati MT, Pasqualotto AC, Warn PA, et al. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007;153(Pt 6):1677–1692. doi: 10.1099/mic.0.2007/007641-0.
  • Damare S, Raghukumar C, Raghukumar S, et al. Fungi in deep-sea sediments of the Central Indian basin. Deep Sea Res Part I. 2006;53(1):14–27. doi: 10.1016/j.dsr.2005.09.005.
  • Kamat S, Kumari M, Taritla S, et al. Endophytic fungi of marine alga from Konkan Coast, India—a rich source of bioactive material. Front Mar Sci. 2020;7:31. doi: 10.3389/fmars.2020.00031.
  • Lee S, Park MS, Lim YW, et al. Diversity of marine-derived Aspergillus from tidal mudflats and sea sand in Korea. Mycobiology. 2016;44(4):237–247. doi: 10.5941/MYCO.2016.44.4.237.
  • Wiese J, Ohlendorf B, Blümel M, et al. Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs. 2011;9(4):561–585. doi: 10.3390/md9040561.
  • Jones EBG, Suetrong S, Sakayaroj J, et al. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015;73(1):1–72. doi: 10.1007/s13225-015-0339-4.
  • Badawy AA, Alotaibi MO, Abdelaziz AM, et al. Enhancement of seawater stress tolerance in barley by the endophytic fungus Aspergillus ochraceus. Metabolites. 2021;11(7):428. doi: 10.3390/metabo11070428.
  • Kis-Papo T, Oren A, Wasser SP, et al. Survival of filamentous fungi in hypersaline dead sea water. Microb Ecol. 2003;45(2):183–190. doi: 10.1007/s00248-002-3006-8.
  • Lee YM, Kim MJ, Li H, et al. Marine-derived Aspergillus species as a source of bioactive secondary metabolites. Mar Biotechnol (NY). 2013;15(5):499–519. doi: 10.1007/s10126-013-9506-3.
  • Orfali R, Aboseada MA, Abdel-Wahab NM, et al. Recent updates on the bioactive compounds of the marine-derived genus Aspergillus. RSC Adv. 2021;11(28):17116–17150. doi: 10.1039/d1ra01359a.
  • Jones EG, Pang KL. Marine fungi: and fungal-like organisms. Berlin (Germany): Walter de Gruyter; 2012.
  • Samson RA, Visagie CM, Houbraken J, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014;78(1):141–173. doi: 10.1016/j.simyco.2014.07.004.
  • Lee S, Park MS, Lee H, et al. Fungal diversity and enzyme activity associated with the macroalgae, Agarum clathratum. Mycobiology. 2019;47(1):50–58. doi: 10.1080/12298093.2019.1580464.
  • Lee W, Kim JS, Seo CW, et al. Diversity of Cladosporium (Cladosporiales, Cladosporiaceae) species in marine environments and report on five new species. MycoKeys. 2023a;98:87–111. doi: 10.3897/mycokeys.98.101918.
  • R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2022. Available from: http://www.R-project.org/.
  • Kahle DJ, Wickham H. GGMAP: spatial visualization with ggplot2. The R J. 2013;5(1):144–161. doi: 10.32614/RJ-2013-014.
  • White TJ. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocol Guide Method Appl. 1990;18(1):315–322.
  • Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323–1330. doi: 10.1128/aem.61.4.1323-1330.1995.
  • Hong S-B, Go S-J, Shin H-D, et al. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia. 2005;97(6):1316–1329. doi: 10.1080/15572536.2006.11832738.
  • Peterson SW. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia. 2008;100(2):205–226. doi: 10.1080/15572536.2008.11832477.
  • Kearse M, Moir R, Wilson A, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–1649. doi: 10.1093/bioinformatics/bts199.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010.
  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033.
  • Varga J, Frisvad JC, Kocsubé S, et al. New and revisited species in Aspergillus section Nigri. Stud Mycol. 2011;69(1):1–17. doi: 10.3114/sim.2011.69.01.
  • Bian C, Kusuya Y, Sklenář F, et al. Reducing the number of accepted species in Aspergillus series Nigri. Stud Mycol. 2022;102(1):95–132. doi: 10.3114/sim.2022.102.03.
  • Sklenář F, Jurjević Ž, Houbraken J, et al. Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species. Stud Mycol. 2021;99(1):100120–100120. doi: 10.1016/j.simyco.2021.100120.
  • Sklenář F, Glässnerová K, Jurjević Ž, et al. Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Stud Mycol. 2022;102(1):53–93. doi: 10.3114/sim.2022.102.02.
  • Araújo CA, Ferreira PC, Pupin B, et al. Osmotolerance as a determinant of microbial ecology: a study of phylogenetically diverse fungi. Fungal Biology. 2020;124(5):273–288. doi: 10.1016/j.funbio.2019.09.001.
  • Cai L, Xu S, Lu T, et al. Salt-tolerant mechanism of marine Aspergillus niger cellulase cocktail and improvement of its activity. Chin J Chem Eng. 2020;28(4):1120–1128. doi: 10.1016/j.cjche.2019.11.012.
  • Jalili B, Bagheri H, Azadi S, et al. Identification and salt tolerance evaluation of endophyte fungi isolates from halophyte plants. Int J Environ Sci Technol. 2020;17(7):3459–3466. doi: 10.1007/s13762-020-02626-y.
  • Abdel-Azeem AM, Abdel-Azeem MA, Abdul-Hadi SY et al. Aspergillus: biodiversity, ecological significances, and industrial applications. In Mishra S, Singh S, Gupta A, et al., editors, Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Cham; Germany: Springer; 2019. p. 121–179.
  • Espinosa SKC, et al. Phylogenetic identification, diversity, and richness of Aspergillus from homes in Havana, Cuba. Microorganisms. 2021;9(1):115.
  • Jamy M, Biwer C, Vaulot D, et al. Global patterns and rates of habitat transitions across the eukaryotic tree of life. Nat Ecol Evol. 2022;6(10):1458–1470. doi: 10.1038/s41559-022-01838-4.
  • Chang KI, Zhang CI, Park C, et al. Oceanography of the east sea (Japan Sea). Cham: Springer International Publishing; 2016. p. 17.
  • Koh CH, Khim JS. The Korean tidal flat of the yellow sea: physical setting, ecosystem and management. Ocean Coastal Manage. 2014;102:398–414. doi: 10.1016/j.ocecoaman.2014.07.008.
  • Baek SH. First report for appearance and distribution patterns of the epiphytic dinoflagellates in the Korean Peninsula. Korean J Environ Biol. 2012;30(4):355–361. doi: 10.11626/KJEB.2012.30.4.355.
  • Seo MH, Choi SY, Park E-O, et al. Species diversity of planktonic copepods and distribution characteristics of its major species in coastal waters of Korea. Korean J Environ Biol. 2018;36(4):525–537. doi: 10.11626/KJEB.2018.36.4.525.
  • Lee JW, Seo CW, Lee W, et al. Diversity and dynamics of marine arenicolous fungi in three seasides of the Korean peninsula. J Microbiol. 2023b;61(1):63–82. doi: 10.1007/s12275-023-00011-1.
  • Jones EG. Marine fungi: some factors influencing biodiversity. Fungal Divers. 2000;4:53–73.
  • Li P-D, Jeewon R, Aruna B, et al. Metabarcoding reveals differences in fungal communities between unflooded versus tidal flat soil in coastal saline ecosystem. Sci Total Environ. 2019;690:911–922. doi: 10.1016/j.scitotenv.2019.06.473.
  • Lv X, Ma B, Yu J, et al. Bacterial community structure and function shift along a successional series of tidal flats in the yellow river delta. Sci Rep. 2016;6(1):36550. doi: 10.1038/srep36550.
  • Moustafa AF, Sharkas MS. Fungi associated with cellulose decomposition in the tidal mud-flats of Kuwait. Mycopathologia. 1982;78(3):185–190. doi: 10.1007/BF00466074.
  • Harvell D, Jordán-Dahlgren E, Merkel S, et al. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanog. 2007;20(1):172–195. doi: 10.5670/oceanog.2007.91.
  • Zuluaga-Montero A, Toledo-Hernández C, Rodríguez JA, et al. Spatial variation in fungal communities isolated from healthy and diseased sea fans Gorgonia ventalina and seawater. Aquat Biol. 2010;8(2):151–160. doi: 10.3354/ab00218.
  • Bonugli-Santos RC, Dos Santos Vasconcelos MR, Passarini MRZ, et al. Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol. 2015;6:269. doi: 10.3389/fmicb.2015.00269.
  • Harpke M, Pietschmann S, Ueberschaar N, et al. Salt and metal tolerance involves formation of guttation droplets in species of the Aspergillus versicolor complex. Genes. 2022;13(9):1631. doi: 10.3390/genes13091631.
  • Rodríguez-Pupo EC, Pérez-Llano Y, Tinoco-Valencia JR, et al. Osmolyte signatures for the protection of Aspergillus sydowii cells under halophilic conditions and osmotic shock. JoF. 2021;7(6):414. doi: 10.3390/jof7060414.
  • Patyshakuliyeva A, Falkoski DL, Wiebenga A, et al. Macroalgae derived fungi have high abilities to degrade algal polymers. Microorganisms. 2019;8(1):52. doi: 10.3390/microorganisms8010052.
  • Suryanarayanan TS. Fungal endosymbionts of seaweeds. In: Raghukumar C, editor, Biology of marine fungi. Berlin (Germany): Springer; 2011. p. 53–69.
  • Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, et al. Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. De Gruyter. 2010;53(5):457–468.
  • Zuccaro A, Schoch CL, Spatafora JW, et al. Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol. 2008;74(4):931–941.
  • Park MS, Oh S-Y, Lee S, et al. Fungal diversity and enzyme activity associated with sailfin sandfish egg masses in Korea. Fungal Ecol. 2018;34:1–9. doi: 10.1016/j.funeco.2018.03.004.