289
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Story Between s and S: [Het-s] Prion of the Fungus Podospora anserina

Pages 85-91 | Received 16 Nov 2023, Accepted 19 Feb 2024, Published online: 09 Mar 2024

References

  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216(4542):136–144. doi:10.1126/science.6801762.
  • Alper T, Haig DA, Clarke MC. The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun. 1966;22(3):278–284. doi:10.1016/0006-291x(66)90478-5.
  • Griffith JS. Self-replication and scrapie. Nature. 1967;215(5105):1043–1044. doi:10.1038/2151043a0.
  • Parry HB. Scrapie disease in sheep—historical, clinical, epidemiological, pathological and practical aspects of the natural disease. London (UK): Academic Press; 1983. p. 192.
  • Bolton DC, McKinley MP, Prusiner SB. Identification of a protein that purifies with the scrapie prion. Science. 1982;218(4579):1309–1311. doi:10.1126/science.6815801.
  • Diringer H, Gelderblom H, Hilmert H, et al. Scrapie infectivity, fibrils and low molecular weight protein. Nature. 1983;306(5942):476–478. doi:10.1038/306476a0.
  • Prusiner SB, McKinley MP, Bowman KA, et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell. 1983;35(2 Pt 1):349–358. doi:10.1016/0092-8674(83)90168-x.
  • Groveman BR, Dolan MA, Taubner LM, et al. Parallel in-register intermolecular beta sheet architecture for prion seeded PrP amyloids. J Biol Chem. 2014;289(35):24129–24142. doi:10.1074/jbc.M114.578344.
  • Saupe SJ, Jarosz DF, True HL. Amyloid prions in fungi. Microbiol Spectr. 2016;4(6). doi:10.1128/microbiolspec.FUNK-0029-2016.
  • Jaunmuktane Z, Brandner S. The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol. 2020;46(6):522–545. doi:10.1111/nan.12592.
  • Rizet G. Les phenomenes de barrage chez Podospora anserina: analyse genetique des barrages entre les souches s et S. Rev Cytol Biol Veg. 1952;13:51–92.
  • Cox BS. PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity. 1965;20(4):505–521. doi:10.1038/hdy.1965.65.
  • Lacroute F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol. 1971;106(2):519–522. doi:10.1128/jb.106.2.519-522.1971.
  • Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in S. cerevisiae. Science. 1994;264(5158):566–569. doi:10.1126/science.7909170.
  • Son M, Han S, Lee S. Prions in microbes: the least in the most. J Microbiol. 2023;61(10):881–889. doi:10.1007/s12275-023-00070-4.
  • Yuan AH, Hochschild A. A bacterial global regulator forms a prion. Science. 2017;355(6321):198–201. doi:10.1126/science.aai7776.
  • Alberti S, Halfmann R, King O, et al. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 2009;137(1):146–158. doi:10.1016/j.cell.2009.02.044.
  • Fleming E, Yuan AH, Heller DM, et al. A bacteria-based genetic assay detects prion formation. Proc Natl Acad Sci USA. 2019;116(10):4605–4610. doi:10.1073/pnas.1817711116.
  • Levkovich SA, Rencus-Lazar S, Gazit E, et al. Microbial prions: dawn of a New Era. Trends Biochem Sci. 2021;46(5):391–405. doi:10.1016/j.tibs.2020.12.006.
  • Nakayashiki T, Kurtzman CP, Edskes HK, et al. Yeast prions [URE3] and [PSI+] are diseases. Proc Natl Acad Sci USA. 2005;102(30):10575–10580. doi:10.1073/pnas.0504882102.
  • Fischer M, Glass N. Communicate and fuse: how filamentous fungi establish and maintain an interconnected mycelial network. Front Microbiol. 2019;10:619. doi:10.3389/fmicb.2019.00619.
  • Sperling L. Janine Beisson, pioneer of cytoplasmic heredity (June 9, 1931, Saïda–August 30, 2020, Megève). Protist. 2020;171(6):125769. doi:10.1016/j.protis.2020.125769.
  • Beisson-Schecroun J. Incompatibilte cellulaire et interactions nucleo-cytoplasmiques dans les phenomenes de barrage chez Podospora anserina. Ann Genet. 1962;4:3– 50.
  • Turcq B, Denayrolles M, Begueret J. Isolation of two alleles incompatibility genes s and S of the fungus Podospora anserina. Curr Genet. 1990;17(4):297–303. doi:10.1007/BF00314876.
  • Saupe S, Turcq B, Bégueret J, et al. Two allelic genes responsible for vegetative incompatibility in the fungus Podospora anserina are not essential for cell viability. Mol Gen Genet. 1991;162(1):135–139. doi:10.1007/BF00282475.
  • Saupe SJ. A short history of small s: a prion of the fungus Podospora anserina. Prion. 2007;1(2):110–115. doi:10.4161/pri.1.2.4666.
  • Coustou V, Deleu C, Saupe S, et al. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA. 1997;94(18):9773–9778. doi:10.1073/pnas.94.18.9773.
  • Masison DC, Wickner RB. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science. 1995;270(5233):93–95. doi:10.1126/science.270.5233.93.
  • Paushkin SV, Kushnirov VV, Smirnov VN, et al. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 1996;15(12):3127–3134. doi:10.1002/j.1460-2075.1996.tb00675.x.
  • Glover JR, Kowal AS, Schirmer EC, et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell. 1997;89(5):811–819. doi:10.1016/s0092-8674(00)80264-0.
  • Edskes HK, Gray VT, Wickner RB. The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc Natl Acad Sci USA. 1999;96(4):1498–1503. doi:10.1073/pnas.96.4.1498.
  • Wickner RB, Dyda F, Tycko R. Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register β-sheet structure. Proc Natl Acad Sci USA. 2008;105(7):2403–2408. doi:10.1073/pnas.0712032105.
  • Coustou-Linares V, Maddelein ML, Bégueret J, et al. In vivo aggregation of the HET-s prion protein of the fungus Podospora anserina. Mol Microbiol. 2001;42(5):1325–1335. doi:10.1046/j.1365-2958.2001.02707.x.
  • Dos Reis S, Coulary-Salin B, Forge V, et al. The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils. J Biol Chem. 2002;277(8):5703–5706. doi:10.1074/jbc.M110183200.
  • Maddelein M-L, Dos Reis S, Duvezin-Caubet S, et al. Amyloid aggregates of the HET-s prion protein are infectious. Proc Natl Acad Sci USA. 2002;99(11):7402–7407. doi:10.1073/pnas.072199199.
  • Balguerie A, Dos Reis S, Ritter C, et al. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J. 2003;22(9):2071–2081. doi:10.1093/emboj/cdg213.
  • Wasmer C, Lange A, Van Melckebeke H, et al. Amyloid fibrils of the HET-s(218-279) prion form a beta solenoid with a triangular hydrophobic core. Science. 2008;319(5869):1523–1526. doi:10.1126/science.1151839.
  • Collinge J, Clarke AR. A general model of prion strains and their pathogenicity. Science. 2007;318(5852):930–936. doi:10.1126/science.1138718.
  • Derkatch IL, Chernoff YO, Kushnirov VV, et al. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics. 1996;144(4):1375–1386. doi:10.1093/genetics/144.4.1375.
  • Schlumpberger M, Prusiner SB, Herskowitz I. Induction of distinct [URE3] yeast prion strains. Mol Cell Biol. 2001;21(20):7035–7046. doi:10.1128/MCB.21.20.7035-7046.2001.
  • Bradley ME, Edskes HK, Hong JY, et al. Interactions among prions and prion "strains" in yeast. Proc Natl Acad Sci USA. 2002;99(Suppl. 4):16392–16399. doi:10.1073/pnas.152330699.
  • Riek R, Hornemann S, Wider G, et al. NMR structure of the mouse prion protein domain PrP(121-321). Nature. 1996;382(6587):180–182. doi:10.1038/382180a0.
  • Ritter C, Maddelein M-L, Siemer AB, et al. Correlation of structural elements and infectivity of the HET-s prion. Nature. 2005;435(7043):844–848. doi:10.1038/nature03793.
  • Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure. 2010;18(10):1244–1260. doi:10.1016/j.str.2010.08.009.
  • Wickner RB, Edskes HK, Son M, et al. Yeast prions compared to functional prions and amyloids. J Mol Biol. 2018;430(20):3707–3719. doi:10.1016/j.jmb.2018.04.022.
  • Otzen D, Riek R. Functional amyloids. Cold Spring Harb Perspect Biol. 2019;11(12):a033860. doi:10.1101/cshperspect.a033860.
  • Bernet J. Mode d‘action des gènes de barrage et relation entre l‘incompatibilité cellulaire et l‘incompatibilité sexuelle chez le Podospora anserina. Ann Sci Natl Bot. 1965;6:611–768.
  • Dalstra HJP, Swart K, Debets AJM, et al. Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina. Proc Natl Acad Sci USA. 2003;100(11):6616–6621. doi:10.1073/pnas.1030058100.
  • Deleu C, Clavé C, Bégueret J. A single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podospora anserina. Genetics. 1993;135(1):45–52. doi:10.1093/genetics/135.1.45.
  • Greenwald J, Buhtz C, Ritter C, et al. The mechanism of prion inhibition by HET-S. Mol Cell. 2010;38(6):889–899. doi:10.1016/j.molcel.2010.05.019.
  • Seuring C, Greenwald J, Wasmer C, et al. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol. 2012;10(12):e1001451. doi:10.1371/journal.pbio.1001451.
  • Mathur V, Seuring C, Riek R, et al. Localization of HET-S to the cell periphery, not to [Het-s] aggregates, is associated with [Het-s]–HET-S toxicity. Mol Cell Biol. 2011;32(1):139–153. doi:10.1128/MCB.06125-11.
  • Daskalov A, Paoletti M, Ness F, et al. Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes. PLoS One. 2012;7(4):e34854. doi:10.1371/journal.pone.0034854.
  • Daskalov A, Habenstein B, Martinez D, et al. Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. PLoS Biol. 2015;13(2):e1002059. doi:10.1371/journal.pbio.1002059.
  • Riek R, Saupe SJ. The HET-S/s prion motif in the control of programmed cell death. Cold Spring Harb Perspect Biol. 2016;8(9):a023515. doi:10.1101/cshperspect.a023515.
  • Debets AJM, Dalstra HJP, Slakhorst M, et al. High natural prevalence of a fungal prion. Proc Natl Acad Sci USA. 2012;109(26):10432–10437. doi:10.1073/pnas.1205333109.