225
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhancing Eritadenine Production in Submerged Cultures of Shiitake (Lentinula edodes Berk. Pegler) Using Blue LED Light and Activated Charcoal. Revealing Eritadenine’s Novel In Vitro Bioherbicidal Activity Against Chrysanthemum morifolium

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 145-159 | Received 16 Nov 2023, Accepted 28 Apr 2024, Published online: 20 Jun 2024

References

  • Afrin S, Rakib M, Kim B, et al. Eritadenine from edible mushrooms inhibits activity of angiotensin converting enzyme in vitro. J Agric Food Chem. 2016;64(11):2263–2268. doi:10.1021/acs.jafc.5b05869.
  • Shimada Y, Morita T, Sugiyama K. Eritadenine-induced alterations of plasma lipoprotein lipid concentrations and phosphatidylcholine molecular species profile in rats fed cholesterol free and cholesterol enriched diets. Biosci Biotechnol Biochem. 2003;67(5):996–1006. doi:10.1271/bbb.67.996.
  • Ctrnáctá V, Fritzler JM, Surinová M, et al. Efficacy of sadenosylhomocysteine hydrolase inhibitors, D-eritadenine and (S)-DHPA, against the growth of Cryptosporidium parvum in vitro. Exp Parasitol. 2010;126(2):113–116. doi:10.1016/j.exppara.2010.04.007.
  • Yang H, Hwang I, Kim S, et al. Preventive effects of Lentinus edodes on homocysteinemia in mice. Exp Ther Med. 2013;6(2):465–468. doi:10.3892/etm.2013.1130.
  • Enman J, Hodge D, Berglund K, et al. Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia. J Agric Food Chem. 2008;56(8):2609–2612. doi:10.1021/jf800091a.
  • Enman J, Hodge D, Berglund K, et al. Growth promotive conditions for enhanced eritadenine production during submerged cultivation of Lentinus edodes. J Chem Tech Biotech. 2012;87(7):903–907. doi:10.1002/jctb.3697.
  • Duran-Rivera B, Rojas-Rodas F, Silva-López W, et al. Molecular identification of shiitake [Lentinula edodes Berk (Pegler)] and production of secondary metabolites with biotechnological potential. RB. 2020;5(3):1183–1188. doi:10.21931/RB/2020.05.03.3.
  • Duran-Rivera B, Moreno-Suarez J, Rojas F, et al. Enhancement of eritadenine production using three carbon sources, immobilization and surfactants in submerged culture with shiitake mushroom (Lentinula edodes) (Berk.) Singer. Afr J Food Sci. 2018;12(12):374–382. doi:10.5897/AJFS2017.1654.
  • Abd R, Lim E, Hasan H, et al. The investigation of media components for optimal metabolite production of Aspergillus terreus ATCC 20542. J Microbiol Methods. 2019;164:105672. doi:10.1016/j.mimet.2019.105672.
  • Kirsch L, de Macedo A, Teixeira F. Production of mycelial biomass by the amazonian edible mushroom Pleurotus albidus. Braz J Microbiol. 2016;47(3):658–664. doi:10.1016/j.bjm.2016.04.007.
  • Zhang Y, Jiao R, Lu Y, et al. Improvement of chaetominine production by tryptophan feeding and medium optimization in submerged fermentation of Aspergillus fumigatus CY018. Bioresour Bioprocess. 2016;3(1):45–49. 2- doi:10.1186/s40643-016-0117-5.
  • Li J, Pan Y, Liu G. Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal Genet Biol. 2013;61:69–79. doi:10.1016/j.fgb.2013.10.006.
  • Niehaus E, Janevska S, von Bargen K, et al. Apicidin F: characterization and genetic manipulation of a new secondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS One. 2014;9(7):e103336. doi:10.1371/journal.pone.0103336.
  • López-Berges M, Rispall N, Prados-Rosales R, et al. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase tor and the bZIP protein MeaB. Plant Cell. 2010;22(7):2459–2475. doi:10.1105/tpc.110.075937.
  • Chen D, Chen M, Wu S, et al. The molecular mechanisms of Monascus purpureus m9 responses to blue light based on the transcriptome analysis. Sci Rep. 2017;7(1):5537. doi:10.1038/s41598-017-05990-x.
  • Wang C, Chen D, Chen M, et al. Stimulatory effects of blue light on the growth, monascin and ankaflavin production in Monascus. Biotechnol Lett. 2015;37(5):1043–1048. doi:10.1007/s10529-014-1763-3.
  • Sano H, Narikiyo T, Kaneko S, et al. Sequence analysis and expression of a blue-light photoreceptor gene, Le.phrA from the basidiomycetous mushroom Lentinula edodes. Biosci Biotechnol Biochem. 2007;71(9):2206–2213. doi:10.1271/bbb.70170.
  • Kim J, Kim D, Park Y, et al. Transcriptome analysis of the edible mushroom Lentinula edodes in response to blue light. PLoS One. 2020;15(3):e0230680. doi:10.1371/journal.pone.0230680.
  • Qi Y, Sun X, Ma L, et al. Identification of two Pleurotus ostreatus blue light receptor genes (PoWC-1 and PoWC-2) and in vivo confirmation of complex PoWC-12 formation through yeast two hybrid system. Fungal Biol. 2020;124(1):8–14. doi:10.1016/j.funbio.2019.10.004.
  • Yang H, Wang X, Li Z, et al. The effect of blue light on the production of citrinin in Monascus purpureus m9 by regulating the mraox gene through lncRNA AOANCR. Toxins 2019;11(9):536. doi:10.3390/toxins11090536.
  • Chen D, Xue C, Chen M, et al. Effects of blue light on pigment biosynthesis of Monascus. J Microbiol. 2016;54(4):305–310. doi:10.1007/s12275-016-6011-1.
  • Soumya S, Sreelatha G, Sharmila T. Light influences pigment, biomass and morphology in Chaetomium cupreum - ss02 - a photoresponse study. Int J Curr Microbiol Appl Sci. 2014;3(4):53–64.
  • Glukhova L, Sokolyanskaya L, Plotnikov E, et al. Increased mycelial biomass production by Lentinula edodes intermittently illuminated by green light emitting diodes. Biotechnol Lett. 2014;36(11):2283–2289. doi:10.1007/s10529-014-1605-3.
  • Enman J, Rova U, Berglund K. Quantification of the bioactive compound eritadenine in selected strains of shiitake mushroom (Lentinus edodes). J Agric Food Chem. 2007;55(4):1177–1180. doi:10.1021/jf062559+.
  • Morales D, Piris A, Ruiz-Rodriguez A, et al. Extraction of bioactive compounds against cardiovascular diseases from Lentinula edodes using a sequential extraction method. Biotechnol Prog. 2018;34(3):746–755. doi:10.1002/btpr.2616.
  • Lopes C, Colli B. Overproduction of clavulanic acid by extractive fermentation. Electron. J. Biotechnol. 2015;18(3):154–160. doi:10.1016/j.ejbt.2015.03.001.
  • Zhang K, Zhang L, Yang S. Fumaric acid recovery and purification from fermentation broth by activated carbon adsorption followed with desorption by acetone. Ind Eng Chem Res. 2014;53(32):12802–12808. doi:10.1021/ie501559f.
  • Ayub A, Raza Z, Majeed M, et al. Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. Int J Biol Macromol. 2020;163:603–617. doi:10.1016/j.ijbiomac.2020.06.287.
  • Hossain M. Recent perspective of herbicide: review of demand and adoption in world agriculture. J Bangladesh Agric Univ. 2016;13(1):19–30. doi:10.3329/jbau.v13i1.28707.
  • Daba A, Berecha G, Tadesse M, et al. Evaluation of the herbicidal potential of some fungal species against Bidens pilosa, the coffee farming weeds. Saudi J Biol Sci. 2021;28(11):6408–6416. doi:10.1016/j.sjbs.2021.07.011.
  • Hasan M, Ahmad-Hamdani M, Rosli A, et al. Bioherbicides: an Eco-Friendly tool for sustainable weed management. Plants 2021;10(6):1212. doi:10.3390/plants10061212.
  • Bashir U, Khan A, Javaid A. Herbicidal activity of Aspergillus niger metabolites against parthenium weed. Planta Daninha. 2018;v36:e018167123. doi:10.1590/s0100-83582018360100025.
  • Cheng L, Zhu H, Wei Y, et al. Study on herbicidal potential of two fungi in Qinghai region. OALib. 2022;09(01):1–20. doi:10.4236/oalib.1108294.
  • Singh A, Pandey A. Evaluation of herbicidal potential of selected mycoherbicidal strain against a noxious weed Cassia otusifolia L. ASAG. 2020;4:03–07. doi:10.31080/ASAG.2020.04.0907.
  • Cimmino A, Andolfi A, Zonno M, et al. Phomentrioloxin, a fungal phytotoxin with potential herbicidal activity, and its derivatives: a structure-activity relationship study. J Agric Food Chem. 2013;61(40):9645–9649. doi:10.1021/jf4030618.
  • Mojoudi N, Mirghaffari N, Soleimani M, et al. Phenol adsorption on high microporous activated carbons prepared from oily sludge: equilibrium, kinetic and thermodynamic studies. Sci Rep. 2019;9(1):19352. doi:10.1038/s41598-019-55794-4.
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol. 1962;15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.
  • Sano H, Kaneko S, Sakamoto Y, et al. The basidiomycetous mushroom Lentinula edodes white collar-2 homolog PHRB, a partner of putative blue-light photoreceptor PHRA, binds to a specific site in the promoter region of the L. edodes tyrosinase gene. Fungal Genet Biol. 2009;46(4):333–341. doi:10.1016/j.fgb.2009.01.001.
  • Tang L, Tan Q, Bao D, et al. Comparative proteomic analysis of light induced mycelial brown film formation in Lentinula edodes. Biomed Res Int. 2016;2016:5837293–5837298. doi:10.1155/2016/5837293.
  • Corrochano L. Light in the fungal world: from photoreception to gene transcription and Beyond. Annu Rev Genet. 2019;53(1):149–170. doi:10.1146/annurev-genet-120417-031415.
  • Brakhage A. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013;11(1):21–32. doi:10.1038/nrmicro2916.
  • Izah S, Enaregha E, Epidi J. Vitamin content of Saccharomyces cerevisiae biomass cultured in cassava wastewater. MOJ Toxicol. 2019;5(1):42–45. doi:10.15406/mojt.2019.05.00151.
  • Müller J, Beckers M, Mußmann N, et al. Elucidation of auxotrophic deficiencies of Bacillus pumilus DSM 18097 to develop a defined minimal medium. Microb Cell Fact. 2018;17(1):106. doi:10.1186/s12934-018-0956-1.
  • Tepwong P, Giri A, Sasaki F, et al. Mycobial enhancement of ergothioneine by submerged cultivation of edible mushroom mycelia and its application as an antioxidative compound. Food Chem. 2012;131(1):247–258. doi:10.1016/j.foodchem.2011.08.070.
  • Velmurugan P, Lee Y, Venil C, et al. Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng. 2010;109(4):346–350. doi:10.1016/j.jbiosc.2009.10.003.
  • Heintzen C. Plant and fungal photopigments. WIREs Membr Transp Signal. 2012;1(4):411–432. doi:10.1002/wmts.36.
  • Nakano Y, Fujii H, Kojima M. Identification of blue-light photoresponse genes in oyster mushroom mycelia. Biosci Biotechnol Biochem. 2010;74(10):2160–2165. doi:10.1271/bbb.100565.
  • Ramesh V, Karunakaran C, Rajendran A. Optimization of submerged culture conditions for mycelial biomass production with enhanced antibacterial activity of the medicinal macro fungus Xylaria sp. Strain R006 against drug resistant bacterial pathogens. CREAM. 2014;4(1):88–98. doi:10.5943/cream/4/1/7.
  • Adebayo-Tayo B, Emeka U. Influence of different nutrient sources on exopolysaccharide production and biomass yield by submerged culture of Trametes versicolor and Coprinus sp. AU J.T. 2011;15(2):63–69.
  • Pedri L, Lozano M, Hermann K, et al. Influence of nitrogen sources on the enzymatic activity and grown by Lentinula edodes in biomass Eucalyptus benthamii. Braz J Biol. 2015;75(4):940–947. doi:10.1590/1519-6984.03214.
  • Ragadhita R, Nandiyanto A. How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations. Indonesian J Sci Technol. 2021;6(1):205–234. doi:10.17509/ijost.v6i1.32354.
  • García-Pérez P, Losada-Barreiro S, Gallego P, et al. Adsorption of gallic acid, propyl gallate and polyphenols from Bryophyllum extracts on activated carbon. Sci Rep. 2019;9(1):14830. 15 doi:10.1038/s41598-019-51322-6.
  • Soares C, Soares F. Purification of biotechnological xylitol from Candida tropicalis fermentation using activated carbon in fixed-bed adsorption columns with continuous feed. FBP. 2021;126:73–80. doi:10.1016/j.fbp.2020.12.013.
  • García R, Peralta L, Segura C, et al. Study of the catalytic conversion and adsorption of abietic acid on activated carbon: effect of surface acidity. J Chil Chem Soc. 2016;61(4):3239–3245. doi:10.4067/S0717-97072016000400018.
  • Özmetin C, Aydin Ö. A semi-empirical model for adsorption of magnesium ion from magnesium impurity-containing saturated boric acid solutions on amberlite IR-120 resin. Fresenius Environ. Bull. 2007;16:720–725.
  • Souderjani E, Keshtkar A, Mousavian M. Application of response surface methodology for thorium (IV) removal using amberlite IR-120 and IRA-400: ion exchange equilibrium and kinetics. JPST. 2017;3(2):101–112. doi:10.22104/JPST.2017.2267.1088.
  • Sabio E, Zamora-Polo F, González J, et al. Characterization under static and dynamic conditions of commercial activated carbons for their use in wastewater plants. Appl Surf Sci. 2006;252(17):6058–6063. doi:10.1016/j.apsusc.2005.11.026.
  • Muhamad M, Abdullah S, Hasan H, et al. Adsorption isotherm and kinetic studies of pentachlorophenol removal from aqueous solution onto coconut shell-based granular activated carbon. J Environ Sci Technol. 2018;11:68–78. doi:10.3923/jest.2018.68.78.
  • Penedo M, Manals E, Calzadilla F, et al. Adsorción de níquel y cobalto sobre carbón activado de cascarón de coco. Tecnología Química. 2015;35(1):110–124.
  • Özkaya B. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J Hazard Mater. 2006;129(1–3):158–163. doi:10.1016/j.jhazmat.2005.08.025.
  • Aurich A, Hofmann J, Oltrogge R, et al. Improved isolation of microbiologically produced (2R,3S)-isocitric acid by adsorption on activated carbon and recovery with methanol. Org Process Res Dev. 2017;21(6):866–870. doi:10.1021/acs.oprd.7b00090.
  • Quintero J, Acosta A, Mejía C, et al. Purification of lactic acid obtained from a fermentative process of cassava syrup using ion exchange resins. Rev Fac Ingeniería. 2012;65(65):139–151. doi:10.17533/udea.redin.14225.
  • Ayana B. Determination of efficacy of broad leaf herbicides on various weed floras in wheat field under rain fed production system. IJNRLS. 2022;9(3):1–9. doi:10.5281/zenodo.6510978.
  • Mandal V, Ghosh N, Mitra P, et al. Production and characterization of a broad-spectrum antimicrobial 5-butyl-2-pyridine carboxylic acid from Aspergillus fumigatus nHF-01. Sci Rep. 2022;12(1):6006. doi:10.1038/s41598-022-09925-z.
  • Wu J, Tokunaga T, Kondo M, et al. Erinaceolactones a to C, from the culture broth of Hericium erinaceus. J Nat Prod. 2015;78(1):155–158. doi:10.1021/np500623s.
  • Wu J, Uchida K, Ridwan A, et al. Erinachromanes a and B and erinaphenol a from the culture broth of Hericium erinaceus. J Agric Food Chem. 2019;67(11):3134–3139. doi:10.1021/acs.jafc.8b06050.
  • De Backer M, Alaei H, Bockstaele E, et al. Identification and characterization of pathotypes in Puccinia horiana, a rust pathogen of Chrysanthemum x morifolium. Eur J Plant Pathol. 2011;130(3):325–338. doi:10.1007/s10658-011-9756-8.
  • Hensley D, Gibbons F. Tolerance of some garden flowers to selected preemergence herbicides. Trans Kansas Acad Sci. 1985;88(3/4):146–153. doi:10.2307/3627886.
  • Araújo C, Morgado C, Gomes A, et al. Asteraceae family: a review of its allelopathic potential and the case of Acmella oleracea and Sphagneticola trilobata. Rodriguesia. 2021;72:e01622020. doi:10.1590/2175-7860202172137.
  • Hollmann P, Lohbrunner G, Shamoun S, et al. Establishment and characterization of Rubus tissue culture systems for in vitro bioassays against phytotoxins from Rubus fungal pathogens. PCTOC. 2002;68(1):43–48. doi:10.1023/A:1012915118227.
  • Li X, Huang L, Hong Y, et al. Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress. Front Plant Sci. 2015;6:717. doi:10.3389/fpls.2015.00717.
  • Wu X, Li F, Kolenovsky A, et al. A mutant deficient in S-adenosylhomocysteine hydrolase in arabidopsis shows defects in roothair development. Botany. 2009;87(6):571–584. doi:10.1139/B08-124.
  • Chauhan B. Grand challenges in weed management. Front Agron. 2020;1:1–4. doi:10.3389/fagro.2019.00003.
  • Heap I. Current Status of the International Herbicide-Resistant Weed Database. International Herbicide-Resistant Weed Database. 2024. Available online: http://www.weedscience.org. (accessed on 15 January 2024).
  • Roberts J, Florentine S, Fernando W, et al. Achievements, developments and future challenges in the field of bioherbicides for weed control: a global review. Plants 2022;11(17):2242. doi:10.3390/plants11172242.