323
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Emergence and Potential Spread of Rust Disease on Wisteria floribunda and Corydalis incisa Influenced by Climate Change in Korea

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 160-171 | Received 08 Mar 2024, Accepted 29 Apr 2024, Published online: 16 May 2024

References

  • Figueroa M, Hammond‐Kosack KE, Solomon PS. A review of wheat diseases—a field perspective. Mol Plant Pathol. 2018;19(6):1523–1536. doi: 10.1111/mpp.12618.
  • McCook S, Vandermeer J. The big rust and the red queen: long-term perspectives on coffee rust ­research. Phytopathology. 2015;105(9):1164–1173. doi: 10.1094/PHYTO-04-15-0085-RVW.
  • Goellner K, Loehrer M, Langenbach C, et al. Phakopsora pachyrhizi, the causal agent of Asian soybean rust. Mol Plant Pathol. 2010;11(2):169–177. doi: 10.1111/j.1364-3703.2009.00589.x.
  • Debnath S, Chhetri S, Biswas S. Southern rust disease of corn–a review. Int J Curr Microbiol App Sci. 2019;8:855–862. doi: 10.20546/ijcmas.2019.811.101.
  • Chaves MS, Martinelli JA, Wesp-Guterres C, et al. The importance for food security of maintaining rust resistance in wheat. Food Sec. 2013;5:157–176. doi: 10.1007/s12571-013-0248-x.
  • Figueroa M, Dodds PN, Henningsen EC. Evolution of virulence in rust fungi—multiple solutions to one problem. Curr Opin Plant Biol. 2020;56:20–27. doi: 10.1016/j.pbi.2020.02.007.
  • Helfer S. Rust fungi and global change. New Phytol. 2014;201(3):770–780. doi: 10.1111/nph.12570.
  • Duplessis S, Lorrain C, Petre B, et al. Host adaptation and virulence in heteroecious rust fungi. Annu Rev Phytopathol. 2021;59:403–422. doi: 10.1146/annurev-phyto-020620-121149.
  • Kim K. An exotic invasive liana, wisteria in Korea. International Proceedings of Chemical, Biological and Environmental Engineering (IPCBEE). Vol. 40; 2012. p. 67–71.
  • Farr DF, Rossman AY. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA; 2023 [cited 2023 Feb 8]. Available from: http://nt.ars-grin.gov/fungaldatabases/
  • Dietel P. Uredineae japonicae. II. Bot Jahrb Syst Pflanzengesch Pflanzengeogr. 1900;28:281–290.
  • Hiratsuka N, Kaneko S. Heteroecism of the wistaria rust, Ochropsora kraunhiae (Diet.) Dietel. Proc Jpn Acad Ser B. 1978;54:300–303. doi: 10.2183/pjab.54.300.
  • Lee BY, Nam GH, Yun JH, et al. EAPDC symposium: biological indicators to monitor responses against ­climate change in Korea. Korean J Plant Taxon. 2010;40:202–207. doi: 10.11110/kjpt.2010.40.4.202.
  • Park HC. Development and application of climate change sensitivity assessment method for plants ­using the species distribution models. Chuncheon: Kangwon National University; 2016.
  • Berthon K, Esperon-Rodriguez M, Beaumont L, et al. Assessment and prioritisation of plant species at risk from myrtle rust (Austropuccinia psidii) under current and future climates in Australia. Biol Conserv. 2018;218:154–162. doi: 10.1016/j.biocon.2017.11.035.
  • Feng L, Wang H, Ma X, et al. Modeling the current land suitability and future dynamics of global soybean cultivation under climate change scenarios. Field Crops Res. 2021;263:108069. doi: 10.1016/j.fcr.2021.108069.
  • Zhang N, Liao Z, Wu S, et al. Impact of climate change on wheat security through an alternate host of stripe rust. Food Energy Sec. 2022;11:e356. doi: 10.1002/fes3.356.
  • Beenken L, Zoller S, Berndt R. Rust fungi on Annonaceae II: the genus Dasyspora Berk. & M.A. Curtis. Mycologia. 2012;104(3):659–681. doi: 10.3852/11-068.
  • Pfunder M, Schürch S. Sequence variation and geographic distribution of pseudoflower-forming rust fungi (Uromyces pisi s. lat.) on Euphorbia cyparissias. Mycol Res. 2001;105:57–66. doi: 10.1017/S0953756200003208.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010.
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054.
  • Phillips SJ, Anderson RP, Schapire RE. Maximum ­entropy modeling of species geographic distributions. Ecol Modell. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026.
  • Ramírez Villegas J, Bueno Cabrera A. Working with climate data and niche modeling: I. Creation of bioclimatic variables; 2009.
  • Warren DL, Matzke NJ, Cardillo M, et al. Danlwarren/ENMTools: initial beta release; 2019.
  • Hastie TJ. Generalized additive models. In: Statistical models in S. Routledge: CRC press; 2017. p. 249–307.
  • Wood S, Wood MS. Package ‘mgcv’. R package version 19-0. Vol. 1; 2015. p. 729.
  • Sydow P, Sydow H. Monographia Uredinearum seu specierum omnium ad hunc usque diem cognitarum descriptio et adumbratio systematica: Volumen IV: Fratres Borntraeger; 1924.
  • Aime M, McTaggart A. A higher-rank classification for rust fungi, with notes on genera. Fungal Syst Evol. 2021;7:21–47. doi: 10.3114/fuse.2021.07.02.
  • Kearns HS, Jacobi WR, Burns KS, et al. Distribution of Ribes, an alternate host of white pine blister rust, in Colorado and Wyoming. J Torrey Bot Soc. 2008;135:423–437. doi: 10.3159/07-RA-055.1.
  • Jacobi W, Geils B, Taylor J, et al. Predicting the incidence of comandra blister rust on lodgepole pine: site, stand, and alternate-host influences. Phytopathology. 1993;83:630–637. doi: 10.1094/Phyto-83-630.
  • Peterson P, Leonard K, Miller J, et al. Prevalence and distribution of common barberry, the alternate host of Puccinia graminis, in Minnesota. Plant Dis. 2005;89(2):159–163. doi: 10.1094/PD-89-0159.
  • Koop A. Weed risk assessment for Corydalis incisa (Thunb.) Pers. (Papaveraceae)–Incised fumewort. United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Plant Protection and Quarantine; 2017. p. 32.
  • Zhao J, Wang M, Chen X, et al. Role of alternate hosts in epidemiology and pathogen variation of ­cereal rusts. Annu Rev Phytopathol. 2016;54:207–228. doi: 10.1146/annurev-phyto-080615-095851.
  • Ramirez‐Cabral NYZ, Kumar L, Shabani F. Global risk levels for corn rusts (Puccinia sorghi and Puccinia polysora) under climate change projections. J Phytopathol. 2017;165:563–574. doi: 10.1111/jph.12593.