548
Views
2
CrossRef citations to date
0
Altmetric
Articles; Agriculture and Environmental Biotechnology

Factors influencing the trans-membrane transport of n-octadecane by Pseudomonas sp. DG17

, &
Pages 463-470 | Received 13 Oct 2013, Accepted 24 Jan 2014, Published online: 26 Aug 2014

References

  • Gojgic-Cvijovic GD, Milic JS, Solevic TM, Beskoski VP. Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. Biodegradation. 2012;23:1–14.
  • Ferreira TF, Coelho MAZ, da Rocha-Leao MHM. Factors influencing crude oil biodegradation by Yarrowia lipolytica. Braz Arch Biol Technol. 2012;55(5):785–791.
  • Mrozik A, Piotrowska-Seget Z. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res. 2010;165(5):363–375.
  • Miguel A, Providenti HL, Jack TT. Selected factors limiting the microbial degradation of recalcitrant compounds. J Ind Microbiol. 1993;12:379–395.
  • Ruberto L, Dias R, Lo BA, Vazquez SC. Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. J Appl Microbiol. 2009;106:1101–1110.
  • Baptista SJ, Cammarota MC, Freire DDC. Production of CO2 in crude oil bioremediation in clay soil. Braz Arch Biol Technol. 2005;48:249–255.
  • Bouchez-Naitali M, Rakatozafy H, Marchal R, Leveau JY. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol. 1999;86:421–428.
  • Rosenberg E. Exploiting microbial growth on hydrocarbon: new markets. Trends Biotechnol. 1993;11:419–424.
  • Kallimanis A, Frillingos S, Drainas C, Koukkou A L. Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. Strain Sphe3. Appl Microbiol Biotechnol. 2007;76(3):709–717.
  • Bugg T, Foght JM, Pickard MA, Gray MR. Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl Environ Microbiol. 2000;66:5387–5392.
  • Hua F, Wang H Q. Selective pseudosolubilization capability of Pseudomonas sp. DG17 on n-alkanes and uptake mechanisms analysis. Front Environ Sci Eng. 2013;7(4):539–551.
  • Miyata N, Iwahoric K, Foght JM, Gray MR. Saturable energy depended uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJG-135. Appl Environ Microbiol. 2004;70:363–369.
  • Alexander W, Trondn EE, Hans-Kristian K, Sergey BZ. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol. 2007;76:1209–1221.
  • Sharma SL, Pant A. Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus. Biodegradation. 2000;11:289–294.
  • Hua F, Wang H. Uptake modes of octadecane by Pseudomonas sp. DG17 and synthesis of biosurfactant. J Appl Microbiol. 2011;112:25–37.
  • Zhao DF, Wu WL, Zhang YB, Liu QY. Study on isolation, identification of a petroleum hydrocarbon degrading bacterium Bacillus fusiformis sp. and influence of environmental factors on degradation efficiency. China Petroleum Processing Petrochemical Technol. 2011;13(4):74–82.
  • Towell MG, Paton GI, Semple KT. The biodegradation of cable oil components: impact of oil concentration, nutrient addition and bioaugmentation. Environ Pollut. 2011;159(12):3777–3783.
  • Goldstein RM, Mallory LM, Alexander M. Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol. 1985;50:977–983.
  • Wiggins BA, Alexander M. Role of chemical concentration and second carbon sources in acclimation of microbial communities for biodegradation. Appl Environ Microbiol. 1988;54:2803–2807.
  • Bouchez T, Patureau D, Dabert P, Juretschko S. Ecological study of a bioaugmentation failure. Environ Microbiol. 2000;2:179–190.
  • Claudia DDC, Alexandre SR, Gina V S, Lucy S. Oil biodegradation by Bacillus strains isolated from the rockof an oil reservoir located in a deep-water production basin in Brazil. Appl Microbiol Biotechnol. 2006;73:949–959.
  • Edgehill RU. Mathematical analysis of trickling filter response to pentachlorophenol shock load. Biochem Eng J. 1999;3:55–60.
  • Crawford RL, Ederer MM. Phylogeny of Sphingomonas species that degrade pentachlorophenol. J Ind Microbiol Biotechnol. 1999;23:320–325.
  • Cooney JJ. The fate of petroleum pollutants in fresh water ecosystems. In: Atlas RM, editor. Petroleum microbiology. New York (NY): Macmillan; 1984.
  • Chaillan F, Chaineau CH, Point V, Saliot A, Oudot J. Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ Pollut. 2006;144(1):255–265.
  • Rhykerd RL, Weaver RW, McInnes KJ. Influence of salinity on bioremediation of oil in soil. Environ Pollut. 1995;90:127–130.
  • Norris PR, Johnson DB. Acidophilic microorganisms. In: Horikoshi K, Grant WD, editors. Extremophiles: microbial life in extreme environments. New York (NY): Wiley-Liss; 1998;133–154.
  • Stapleton RD, Savage DC, Sayler GS, Stacey G. Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl Environ Microbiol. 1998;64:4180–4184.
  • Kanekar PP, Sarnaik SS, Kelkar AS. Bioremediation of phenol by alkaliphilic bacteria isolated from alkaline lake of Lonar, India. J Appl Microbiol. 1999;85:128–133.
  • de Carla CCR, da Fonseca MMR. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol Ecol. 2005;51:389–399.
  • Hua XF, Wang J, Wu ZJ, Zhang HX. A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum and salt contaminated soil. Biochem Eng J. 2010;49:201–206.