533
Views
0
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Modelling of risk effect of mercury on nutrient transformation in lake sediments

, , &
Pages 650-658 | Received 17 Dec 2013, Accepted 17 Jan 2014, Published online: 20 Oct 2014

References

  • Topalova Y. Biological control and management of wastewater treatment. Sofia: PublishScieSet-Eco; 2009.
  • Benoit JM, Mason RP, Gilmour CC. Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria. Environ Toxicol Chem. 1999;18(10):2138–2141.
  • Braga, MB, Shaw G, Lester JN. Mercury modeling to predict contamination and bioaccumulation in aquatic ecosystems. Rev Environ Contam Toxicol. 2000;164:69–92.
  • Huibregtse K. Sediment management: should it be on your radar screen? Pollut Eng. 2006;38(10):26–30.
  • Hylander LD, Pinto FN, Guimaraes JD, Meili M, Oliveira LJ, Silva EE. Fish mercury concentration in the Alto Pantanal, Brazil: influence of season and water parameters. Sci Total Environ. 2000;261(1–3):9–20.
  • Sunderland EM, Gobas FC, Branfireun BA, Heyes A. Environmental controls on the speciation and distribution of mercury in coastal sediments. Marine Chem. 2006;102(1–2):111–123.
  • Swain EB, Jakus PM, Rice G, Lupi F, Maxson PA, Pacyna JM, Penn A, Spiegel SJ, Veiga MM. Socioeconomic consequences of mercury use and pollution. Ambio. 2007; 36(1):45–61.
  • USEPA: EPA can better implement its strategy for managing contaminated sediments. [Internet]. In: Office of the Inspector General (Ed.) Washington: The United States Environmental Protection Agency; Report No. 2006-P-00016.[2006 March 15]. Available from: http://www.epa.gov/oig/reports/2006/20060315-2006-P-00016.pdf.
  • USEPA. Mercury study report to Congress. Office of Air Quality Planning and Standards and Office of Research and Development, US; 1997.
  • Ullrich SM, Tanton TW, Abdrashitova SA. Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Tech. 2001;31(3):241–293.
  • UNEP. Mercury in the aquatic environment: sources, releases, transport and monitoring. Geneva (Switzerland): UNEP's Division of Technology, Industry and Economics (DTIE) Chemicals Branch, UNEP; 2011. (Prepared by The Joint Group of Experts on the Scientific Aspects of the Marine Environmental Protection (GESAMP), Working Group 37).
  • Cordy P, Veiga MM, Salih I, Al-Saadi S, Console S, Garcia O, Alberto Mesa L, Velasquez-Lopez PC, Roeser M. Mercury contamination from artisanal gold mining in Antioquia, Colombia: the world's highest per capita mercury pollution. Sci Total Environ. 2011;410:154–160.
  • Drace K, Kiefer AM, Veiga MM, Williams MK, Ascari B, Knapper KA, Logan, KM, Breslin VM, Skidmore A, Bolt DA, Geist G, Reidy L, Cizdziel JV. Mercury-free, small-scale artisanal gold mining in Mozambique: utilization of magnets to isolate gold at clean tech mine. J Cleaner Prod. 2012;32:88–95.
  • Ebinghaus R, Turner RR, de Lacerda LD, Vasiliev O, Salomonsm W. Mercury contaminated sites: characterization, risk assessment and remediation. New York: Springer; 1998.
  • Krisnayanti BD, Anderson CN, Utomo WH, Feng X, Handayanto E, Mudarisna N, Ikram H, Khususiah. Assessment of environmental mercury discharge at a four-year-old artisanal gold mining area on Lombok Island, Indonesia. J Environ Monit. 2012;14(10):2598–2607.
  • Meech JA, Veiga MM, Tromans D. Reactivity of mercury from gold mining activities in darkwater ecosystems. Ambio. 1998;27(2):92–98.
  • Randall PM, Chattopadhyay S. Mercury contaminated sedimentsites-An evaluation of remedial options. Environ Res. 2013;125:131–149.
  • Telmer KH, Veiga MM. World emissions of mercury from artisanal and small scale gold mining. In: Mason R, Pirrone N, editors. Mercury fate and transport in the global atmosphere: emissions, measurements and models. Dordrecht: Springer; 2009. p. 131–172.
  • Veiga M, Meech J. Reduction of mercury emissions from gold mining activities and remedial procedures for polluted sites. In: Azcue JM, editor. Environmental impacts of mining activities. New York: Springer; 1999. p. 143–162.
  • Gluszcz P, Furch K, Ledakowicz S. Mercury in the chlor-alkali electrolysis industry. In: Wagner-Dobler, I., editor. Bioremediation of mercury: current research and industrial applications. Norwich: Caister Academic Press; 2012. p. 16–97.
  • Ilyushchenko M, Panichkin V, Randall P, Kamberov R. Former chlor-alkali factory in Pavlodar, Kazakhstan: mercury pollution, treatment options, and results of post-demercurization monitoring. In: Wagner-Dobler I, editor. Bioremediation of mercury: current research and industrial applications. Norwich: Caister Academic Press; 2012. p. 17–65.
  • Randall P, Ilyushchenko M, Lapshin E, Kuzmenko L. Case study: mercury pollution near a chemical plant in Northern Kazakhstan. Pittsburgh (PA): A&WMA; 2006.
  • Reis AT, Rodrigues SM, Arau´ jo C, Coelho J P, Pereira E, Duarte AC. Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Sci Total Environ. 2009;407(8):2689–2700.
  • Ullrich SM, Ilyushchenko MA, Kamberov IM, Tanton TW. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh. Sci Total Environ. 2007;381(1–3):290–306.
  • Nicolaeva R, Topalova Y, Yaneva I, Pehlivanov L, Traykov I, Kenderov L, Daskalova E, Lincheva S. Evaluation of the environmental effect of the ecosystem of the Iskar River and the technical condition of the facilities on the Middle Iskar cascade from 2011. Sofia: Sofia University and University of Architecture, Civil Engineering and Geodesy; 2011.
  • Lincheva S, Todorova Y, Topalova Y. Diversity and significance of microbial communities in sediments from Lakatnik and Svrazhen reservoir in ‘Middle Iskar’ cascade. Paper presented at: Youth Conference Kliment's Days; 22–23 November 2011; Sofia.
  • Ilkova T, Petrov M, Atanasova M, Rousseau D. An analysis and assessment of models for characteristic of the river ecosystem pollution. Biotechnol & Biotechnol Eq. 2006;20:84–88.
  • APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. Washington (DC): American Public Health Association; 1989.
  • Kuznetzov SI, Dubinina GA. Methods of investigation of aqueous microorganisms. Moscow: Science; 1989.
  • Uzunov Y, Kovachev S. Hydrobiology. Sofia: Pensoft; 2002.
  • Golding GR, Kelly CA, Sparling R, Loewen PC, Rudd JM, Barkay T. Evidence of facilitated uptake of Hg(II) by vibrio anguillarum and escherichia coli under anaerobic and aerobic conditions. Limnol Oceanogr. 2002;47(4):967–975.
  • Fishman KS, Akimov VN, Suzina NE, Vainshtein MB, Liang X. Sulfate-reducing bacteria Desulfobulbus sp. strain BH from a freshwater lake in Guizhou Province, China. Inland Water Biol. 2013;6(1):13–17.
  • Bower J, Savage KS, Weinman B, Barnett MO, Hamilton WP, Harper WF. Immobilization of mercury by pyrite (FeS2), Environ. Pollut. 2008;156(2):504–514.
  • King JK, Harmon SM, Fu TT, Gladden JB. Mercury removal, methylmercury formation, and sulfate-reducing bacteria profiles in wetland mesocosms. Chemosphere. 2002;46(6):859–870.
  • Wanner J. Activated sludge: bulking and foaming control. Boca Raton (FL): CRC; 1994.