1,123
Views
7
CrossRef citations to date
0
Altmetric
Article; Pharmaceutical Biotechnology

Sol–gel immobilization as a suitable technique for enhancement of α-amylase activity of Aspergillus oryzae PP

, , , &
Pages 728-732 | Received 20 Mar 2014, Accepted 20 Jun 2014, Published online: 24 Oct 2014

References

  • Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol. 2002;94(2):137–155.
  • Monfort A, Blasco A, Prieto JA, Sanz P. Combined expression of Aspergillus nidulans endoxylanase X-24 and Aspergillus oryzae α-amylase in industrial baker's yeast and their use in bread making. Appl Environ Microbiol. 1996;62:3712–3715.
  • Prasanna VA. Amylases and their applications. Afr J Biotechnol. 2005;4(13):1525–1529.
  • Morkeberg R, Carlsen M, Nielesen J. Induction and repression of α-amylase production in batch and continuous cultures of Aspergillus oryzae. Microbiology. 1995;141:2449–2454.
  • Chimata MK, Chetty CS, Suresh C. Fermentative production and thermostability characterization of amylase from Aspergillus species and its application potential evaluation in desizing of cotton cloth. Biotechnol Res Int. 2011;8: Article ID 323891. doi:10.4061/2011/323891
  • Mussatto SI, Rodrigues LR, Teixeira JA. β-Fructofuranosidase production by repeated batch fermentation with immobilized Aspergillus japonicas. J Ind Microbiol Biotechnol. 2009;36:923–928.
  • Hara P, Hanefeld U, Kanerva LT. Sol–gels and cross-linked aggregates of lipase PS from Burkholderia cepacia and their application in dry organic solvents. J Mol Catalysis B: Enzym. 2008;50:80–86.
  • Desimone MF, De Marzi MC, Copello GJ, Fernandez MM, Pieckenstain FL, Malchiodi EL, Diaz LE. Production of recombinant proteins by sol–gel immobilized Escherichia coli. Enzym Microb Technol. 2006;40:168–171.
  • Nguyen-Ngoc H, Tran-Minh C. Sol–gel process for vegetal cell encapsulation. Mater Sci Eng C. 2007;27:607–611.
  • Yu D, Volponi J, Chhabra S, Brinker CJ, Mulchandani A, Singh AK. Aqueous sol–gel encapsulation of genetically engineered Moraxella spp. cells for the detection of organophosphates. Biosens Bioelectron. 2005;20:1433–1437.
  • Dickson DJ, Page CJ, Elya RL. Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol–gel. Int J Hydrogen Energy. 2009;34: 204–215.
  • Ding L, Qu B. New supports for enzyme immobilization based on the copolymers of poly (vinylene carbonate) and a-(2-aminoethylene amino)-v-(2-aminoethylene amino) – poly (ethylene oxide). React Funct Polymers. 2001;49:67–76.
  • Domink L, Jurgen-Lohmann, Legge RL. Immobilization of bovine catalase in sol–gels. Enzyme Microb Technol. 2006;39:626–633.
  • Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol. 2004;35:126–139.
  • Yavuz H, Bayramoglu G, Kaçar Y, Denizli A, Arıca MY. Congo Red attached monosize poly (HEMA-co-MMA) microspheres for use in reversible enzyme immobilization. Biochem Eng J. 2002;10:1–8.
  • Chen JP, Lin YS. Decolorization of azo dye by immobilized Pseudomonas luteola entrapped in alginate–silicate sol–gel beads. Proc Biochem. 2007;42:934–942.
  • Chernev G, Samuneva B, Djambaski P, Kabaivanova L, Dobreva E, Emanuilova E, Salvado IMM, Fernandes MH. New hybrid nanomaterials containing alginate. Nanosci Nanotechnol. 2005;5:254–258.
  • Coradin T, Livage J. Mesoporous alginate/silica biocomposites for enzyme immobilization. C. R. Chimie. 2003;6:147–152.
  • Sandstedt RM, Kneen E, Blish MJ. A standardized wohlgemuth procedure for alpha-amylase activity. Cereal Chem. 1939;16:712–723.
  • Yordanova M, Evstatieva Y, Chernev G, Ilieva S, Denkova R, Nikolova D. Enhancement of xylanase production by sol-gel immobilization of Aspergillus awamori K-1. Bulgarian J Agric Sci. 2013;19(2):117–119.
  • Tsekova KV, Chernev GE, Hristov AE, Kabaivanova LV. Phenol biodegradation by fungal cells immobilized in sol-gel hybrids. Z Naturforsch C. 2013;68(1–2):53–59.
  • Gill I, Ballesteros A. Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals. Trends Biotechnol. 2000;18:282–296.
  • Saravanan N, Kannadasan T, Basha CA, Manivasagan V. Biosorption of textile dye using immobilized bacterial (Pseudomonas aeruginosa) and fungal (Phanerochate chrysosporium) cells. Am J Environ Sci. 2013;9(4):377–387.
  • Mollaei M, Abdollahpour S, Atashgahi S, Abbasi H, Masoomi F, Rada I, Lotfi AS, Zahiri HS, Vali H, Noghabi KA. Enhanced phenol degradation by Pseudomonas sp. SA01: Gaining insight into the novel single and hybrid immobilizations. J Hazard Mater. 2010;175:284–292.
  • Branyik T, Kuncova G, Paca Y. The use of silica gel prepared by sol-gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol. Appl Microbiol Biotechnol. 2000;54:168–172.
  • Peralta-Perez MR, Martinez-Trujillo MA, Nevarez-Moorillon GV, Perez-Bedolla R, Garcia-Rivero M. Immobilization of Aspergillus niger sp. in sol gel and its potential for production of xylanases. J Sol-Gel Sci Technol. 2011;57: 6–11.