882
Views
7
CrossRef citations to date
0
Altmetric
Article; Food Biotechnology

Intraspecific protoplast fusion of Brettanomyces anomalus for improved production of an extracellular β-glucosidase

, &
Pages 878-881 | Received 23 Feb 2014, Accepted 16 Apr 2014, Published online: 03 Nov 2014

References

  • Wedral D, Shewfelt R, Frank J. The challenge of Brettanomyces in wine. LWT Food Sci Technol. 2010;43(10):1474–1479.
  • Smith MT. Brettanomyces Kufferath & van Laer (1921). In: Kurtzman CP, Fell JW, Boekhout T, editors. The yeasts: a taxonomic study. 5th ed. Vol. 2. Amsterdam: Elsevier; 2011. p. 983–986.
  • Daenen L, Saison D, Sterck F. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts. J Appl Microbiol. 2008;104(2):478–488.
  • Vanderhaegen B, Neven H, Daenen L, Verstrepen KJ, Verachtert H, Derdelinckx G. Furfuryl ethyl ether: important aging flavor and a new marker for the storage conditions of beer. J Agric Food Chem. 2004;52(6):1661–1668.
  • Rajasree KP, Mathew GM, Pandey A, Sukumaran RK. Highly glucose tolerant beta-glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass. J Ind Microbiol Biotechnol. 2013;40(9):967–975.
  • Hopwood DA, editor. Natural product biosynthesis by microorganisms and plants, Part A. Vol. 515. Methods in enzymology. Amsterdam: Elsevier; 2012. p. xv–xx.
  • Palmeri R, Spagna G. Beta-glucosidase in cellular and acellular form for winemaking application. Enzym Microb Technol. 2007;40(3):382–389.
  • Pyo YH, Lee TC, Lee YC. Enrichment of bioactive isoflavones in soymilk fermented with beta-glucosidase-producing lactic acid bacteria. Food Res Int. 2005;38(5):551–559.
  • Chakraborty U, Sikdar SR. Intergeneric protoplast fusion between Calocybe indica (milky mushroom) and Pleurotus florida aids in the qualitative and quantitative improvement of sporophore of the milky mushroom. World J Microbiol Biotechnol. 2010;26(2):213–225.
  • Chen XY, Wei PL, Fan LM, Yang D, Zhu XC, Shen WH, Xu ZN, Cen PL. Generation of high-yield rapamycin-producing strains through protoplasts-related techniques. Appl Microbiol Biotechnol. 2009;83(3):507–512.
  • Stephanopoulos G. Metabolic engineering by genome shuffling – two reports on whole-genome shuffling demonstrate the application of combinatorial methods for phenotypic improvement in bacteria. Nat Biotechnol. 2002;20(7):666–668.
  • Wang HK, Sun Y, Chen C, Sun Z, Zhou YC, Sun FD, Zhang HP, Dai YJ. Genome shuffling of Lactobacillus plantarum for improving antifungal activity. Food Control. 2013;32(2):341–347.
  • Zhang YX, Perry K, Vlctor A, Powell K, Stemmer WP, Cardayre DS. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature. 2002;415(6872):644–646.
  • Xu ZN, Shen WH, Chen XY, Lin JP, Cen PL. A high-throughput method for screening of rapamycin-producing strains of Streptomyces hygroscopicus by cultivation in 96-well microtiter plates. Biotechnol Lett. 2005;27(15):1135–1140.
  • Lin J, Pillay B, Singh S. Purification and biochemical characteristics of beta-D-glucosidase from a thermophilic fungus, Thermomyces lanuginosus – SSBP. Biotechnol Appl Biochem. 1999;30:81–87.
  • Yu L, Pei XL, Lei T, Wang YH, Feng Y. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol. 2008;134(1–2):154–159.
  • John RP, Gangadharan D, Nampoothiri KM. Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes. Bioresour Technol. 2008;99(17):8008–8015.
  • Gong J, Zheng H, Wu Z, Chen T. Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv. 2009;27(6):996–1005.