833
Views
0
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Osmoregulation capacity in Bulgarian durum wheat

, , &
Pages 786-797 | Received 29 Jul 2014, Accepted 13 Aug 2014, Published online: 28 Oct 2014

References

  • Araus JL, Slafer GA, Reynolds MP, Royo C. Plant breeding and drought in C-3 cereals: What should we breed for? Ann Bot. 2002;89:925–940. Available from: http://dx.doi.org/10.1093/aob/mcf049
  • Araus JL, Bort J, Steduto P, Villegas D, Royo C. Breeding cereals for Mediterranean conditions: ecophysiological clues for biotechnology application. Ann Appl Biol. 2003;142:129–141.
  • Araus JL, Villegas D, Aparicio N, Del Moral LF, El Hani S, Rharrabti Y, Ferrio JP, Royo C. Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Sci. 2003;43:170–180.
  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD. Breeding for high water-use efficiency. J Exp Bot. 2004;55:2447–2460. Available from: http://dx.doi.org/10.1093/jxb/erh277
  • Loss SP, Siddique KHM. Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron. 1994;52:229–276.
  • Dunkeloh A, Jacobeit J. Circulation dynamics of Mediterranean precipitation variability 1948-98. Int J Climatol. 2003;23:1843–1866. Available from: http://dx.doi.org/10.1002/joc.973
  • Blum A. Plant breeding for stress environments. Boca Raton (FL): CRC Press; 1988. Chapter 3, Drought resistance; p. 43–76.
  • Araus JL, Slafer GA, Royo C, Serret MD. Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci. 2008;27:377–412. Available from: http://dx.doi.org/10.1080/07352680802467736
  • Ludlow MM, Muchow RC. A critical evaluation of traits for improving crop yield in water-limited environments. Adv Agron. 1990;43:107–153.
  • Jongdee B, Fukai S, Cooper M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res. 2002;76:153–163. Available from: http://dx.doi.org/10.1016/S0378-4290(02)00036-9
  • Toorchi M, Shashidhar HE, Gireesha TM, Hittalmani S. Performance of backcrosses involving transgressant doubled haploid lines in rice under contrasting moisture regimes: yield component and marker heterozygosity. Crop Sci. 2003;43:1448–1456.
  • Steele KA, Price AH, Shashidhar HE, Witcombe JR. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet. 2006;112:208–221. Available from: http://dx.doi.org/10.1007/s00122-005-0110-4
  • Manickavelu A, Gnanamalar RP, Nadarajan N, Ganesh SK. Identification of important traits in rice (Oryza sativa L.) for lowland drought situation by association analysis. Int J Agric Res. 2006;1(6):509–521.
  • Chapman SC, Edmeades GO. Selection improves drought tolerance in tropical maize populations. II. Direct and correlated responses among secondary traits. Crop Sci. 1999;39:1315–1324. Available from: http://dx.doi.org/10.2135/cropsci1999.3951315x
  • Richards RA. Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot. 2000;51: 447–458.
  • Richards RA, Lukacs Z. Seedling vigour in wheat—sources of variation for genetic and agronomic improvement. Aust J Agric Res. 2002;53(1):41–50.
  • Monneveux P, Jing R, Misra SC. Phenotyping for drought adaptation in wheat using physiological traits. Front Physiol. 2013;3:1–12. Available from: http://dx.doi.org/10.3389/fphys.2012.00429
  • Edmeades GO, Chapman SC, Lafitte HR. Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci. 1999;39(5):1306–1315.
  • Monneveux P, Sanchez C, Tiessen A. Future progress in drought tolerance in maize needs new secondary traits and cross combinations. J Agric Sci. 2008;146(3):287–300.
  • Jongdee B, Pantuwan G, Fukai S, Fischer K. Improving drought tolerance in rainfed lowland rice: an example from Thailand. Agric Water Manag. 2006;80:223–240.
  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM. Drought tolerance improvement in crop plants: an integrative view from breeding to genomics. Field Crop Res. 2008;105:1–14.
  • Blum A. Osmotic adjustment and growth of barley cultivars under drought stress. Crop Sci. 1989;29:230–233.
  • Morgan JM. Osmoregulation as a selection criterion for drought tolerance in wheat. Aust J Agric Res. 1983;34: 607–614.
  • Morgan JM. A gene controlling differences in osmoregulation in wheat. Aust J Agric Res. 1991;18:249–257.
  • Morgan JM, Tan MK. Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol. 1996;23:803–806.
  • Fleury D, Jefferies S, Kuchel H, Langridge P. Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot. 2010;61:3211–3222.
  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Ben Salem M, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics. 2008;178:489–511.
  • Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, Garcia del Moral L, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R. Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot. 2010;62(2):409–438. Available from: http://dx.doi.org/10.1093/jxb/erq287
  • Yang DL, Jing RL, Chang XP, Li W. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics. 2007;176:571–584.
  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW. A microsatellite map of wheat. Genetics. 1998;149:2007–2023.
  • Blanco A, Simeone R, Cenci A, Gadaleta A, Tanzarella OA, Porceddu E, Salvi S, Tuberosa R, Figliuolo G, Spagnoletti P, Roder MS, Korzun V. Extension of the Messapia x dicoccoides linkage map of Triticum turgidum (L.) Thell. Cell Mol Biol Lett. 2004;9:529–541.
  • Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 2004;109:1105–1114.
  • Budak H, Kantar M, Yucebilgili KK. Drought tolerance in modern and wild wheat. Scientific World J. 2013;2013:1–16. Available from: http://dx.doi.org/10.1155/2013/548246
  • Ashraf M. Inducing drought tolerance in plants: recent advances. Biotechnol Adv. 2010;28(1):169–183.
  • Bozhanova V, Dechev D. Assessment of tissue culture derived durum wheat lines for somaclonal variation. Cereal Res Commun. 2002;30:277–284.
  • Blum A. Drought avoidance in wheat and its rapid estimation by remote infrared thermal leaf canopy measurements. In: Proc. 3rd Int. Wheat Conf., 22 May–3 June, 1980. Madrid, Spain.
  • Griffing B. Concepts of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci. 1956;9:463–493.
  • Burrow MD, Coors JG. DIALLEL: a microcomputer program for the simulation and analyses of diallel crosses. Agron J. 1994;86:154–158.
  • Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res. 1980;8: 4321–4325.
  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Gen. 2000;100:584–592.
  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P. Genetic mapping of 66 new microsatellite (SSR) in bread wheat. Theor Appl Genet. 2002;105:413–422.
  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan BP. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet. 2005;110:550–560. Available from: http://dx.doi.org/10.1007/s00122-004-1871-x
  • Zhang J, Nguyen HT, Blum A. Genetic analysis of osmotic adjustment in crop plants. J Exp Bot. 1999;50:292–302.
  • Morgan JM. The use of coleoptile responses to water stress to differentiate wheat genotypes for osmoregulation, growth and yield. Ann Bot. 1988;62:193–198.
  • Dhanda SS, Sethi GS Behl RK. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci. 2004;190:6–12.
  • Bozhanova V, Dechev D, Todorovska E. Utilization of genotype variation in osmotic adjustment in drought resistance breeding. Field Crops Stud. 2009;V(1):21–33. Bulgarian.
  • Lilley JM, Ludlow MM. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crop Res. 1996;48:185–197.
  • Teulat B, Rekika D, Nachit MM, Monneveux P. Comparative osmotic adjustments in barley and tetraploid wheats. Plant Breed. 1997;116:519–523.
  • Khan MA, Iqbal M, Akram M, Ahmad M, Hassan MW, Jamil M. Recent advances in molecular tool development for drought tolerance breeding in cereal crops: a review. Zemdirbyste-Agriculture. 2013;100(3):325–334.
  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragues R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet. 2005;110:865–880.
  • Livaja M, Flamm C, Pauk J, Schmolke M. Characterization of a segregating winter wheat population regarding abiotic stress. 62. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs 2011,55–59.
  • Hill BC, Taylor DJ, Edwards J, Mather D, Bacic A, Langridge P, Roessner U. Whole-genome mapping of agronomic and metabolic traits to identify novel Quantitative Trait Loci in bread wheat grown in a water-limited environment. Plant Physiol. 2013;162:1266–1281. Available from: http://dx.doi.org/10.1104/pp.113.217851
  • Ciuca M, Petcu E. SSR markers associated with membrane stability in wheat (Triticum aestivum L.). Rom Agric Res. 2009;6:21–24.
  • Autrique E, Nachit MM, Monneveux P, Tanksley SD, Sorrel LS. Genetic diversity in durum wheat based on RFLPs, morphological traits, and coefficient of parentage. Crop Sci. 1996;36:735–742.
  • Yan W, Tinker N. A biplot approach for investigating QTL-by-environment patterns. Mol Breed. 2005;15:31–43.
  • Dodig D, Zoric M, Knezjevic D, King SR, Momirovic SG. Assessing drought tolerance and regional patterns of genetic diversity among spring and winter bread wheat using simple sequence repeats and phenotypic data. Crop Pasture Sci. 2010;61:812–824.
  • Sharma P, Sareen S, Saini M, Verma A, Tyagi BS, Sharma I. Assessing genetic variation in heat tolerance synthetic wheat lines using Inter Simple Sequence Repeats and phenotypic data. Aust J Crop Sci. 2014;8(4):515–522.
  • Yan W, Molnar SJ, Fregeau-Reid J, McElroy A, Tinker NA. Associations among oat traits and their responses to the environment. J Crop Improvement. 2007;20:1–29.
  • Kaya Y, Topal R, Gonulal AE, Arisoy RZ. Factor analyses of yield traits in genotypes of durum wheat. Indian J Agric Sci. 2002;72:301–303.
  • Davidson DJ, Chevalier PM. Storage and remobilization of water-soluble carbohydrates in stems of spring wheat. Crop Sci. 1992;32:186–190.
  • Slafer GA, Andrade FH. Changes in physiological attributes of the dry matter economy of bread wheat (Triticum aestivum L.) through genetic improvement of grain yield potential at different regions of the world. Euphytica. 1991;58:37–49.
  • Zamski E, Grunberger Y. Short- and long-spiked high-yielding hexaploid wheat cultivars: which has unexpressed potential for higher yield? Ann Bot. 1995;75:501–506.
  • Izanloo A, Condon AG, Langridge P, Tester M, Schnurbusch T. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot. 2008;59(12):3327–3346.
  • Edwards J, Shavrukov Y, Ramsey C, Tester M, Langridge P, Schnurbusch T. Identification of a QTL on chromosome 7AS for sodium exclusion in bread wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, editors. 11th International Wheat Genetics Symposium. Proceedings; 2008 Aug 24–29; Brisbane: Sydney University Press; 2008. Available from: http://hdl.handle.net/2123/3263
  • Deinlein U, Stephan BA, Horie T, Luo W, Xu G, Schroeder IJ. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014;19:371–379. Available from: http://dx.doi.org/10.1016/j.tplants.2014.02.001
  • Ortiz-Ferrara G, Ya SK, Assad Moussa M. Identification of agronomic traits associated with yield under stress conditions. In: Acevedo E, Conesa AP, Monneveux P, Srivastava JP, editors. Physiology breeding of winter cereals for stressed Mediterranean environments. Paris: INRA; 1991. p. 67–88.
  • Okuyama LA, Federizzi LC, Neto JFB. Plant traits to complement selection based on yield components in wheat. Ciência Rural (Santa Maria). 2005;35(5):1010–1018.
  • Li P, Chen J, Wu P. Agronomic characteristics and grain yield of 30 spring wheat genotypes under drought stress and nonstress conditions. Agron J. 2011;103(6): 1619–1628.
  • Innes P, Hoogendoorn J, Blackwell RD. Effects of difference in data of early emergence and height on yield of winter wheat. J Agric Sci. 1985;105:543–549.
  • Laido G, Marone D, Russo MA, Colecchia SA, Mastrangelo AM, De Vita P, Papa R. Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.). PLoS ONE. 2014;9(4):e95211. Available from: http://dx.doi.org/10.1371/journal.pone.0095211
  • Royo C, Villegas D, Alvaro F, Moragues M, Araus-Ortega JL, Ben Salem M, Bort J, De Ambrogio E, Demontis A, El Ahmed A, García del Moral LF, Isidro J, Maalouf F, Maccaferri M, Martos V, Motawai J, Nachit M, Natoli E, Nserallah N, Ouabbou H. Durum wheat productivity in sustainable Mediterranean agroecosystems as related to yield components and morphophysiological traits. In: Molina-Cano JL, Christou P, Graner A, Hammer K, Jouve N, Keller B, Lasa JM, Powell W, Royo C, Shewry P, Stanca AM, editors. Cereal science and technology for feeding ten billion people: genomics era and beyond. Zaragoza: CIHEAM/IRTA; 2008. p. 395–397. (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 81). Meeting of the Eucarpia Cereal Section, 2006 Nov 13–17, Lleida (Spain). Available from: http://om.ciheam.org/om/pdf/a81/00800888.pdf
  • Nouri A, Etminan A, Teixeira da Silva JA, Mohammadi R. Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Aust J Crop Sci. 2011;5(1):8–16.
  • Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V, Ebmeyer E, Bothe R, Pietsch C, Würschum T. Association mapping for quality traits in soft winter wheat. Theor Appl Genet. 2011;122:961–970.
  • Peleg Z, Fahima T, Korol AB, Abbo S, Saranga Y. Genetic analysis of wheat domestication and evolution under domestication. J Exp Bot. 2011;62(14):5051–5061. Available from: http://dx.doi.org/10.1093/jxb/err206
  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers E, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet. 2009;119:383–395. Available from: http://dx.doi.org/10.1007/s00122-009-1046-x