6,298
Views
100
CrossRef citations to date
0
Altmetric
Review; Agriculture and Environmental Biotechnology

Plant pathogen nanodiagnostic techniques: forthcoming changes?

, , , &
Pages 775-785 | Received 12 Dec 2013, Accepted 09 Jun 2014, Published online: 22 Oct 2014

References

  • Agrios GN. Plant pathology. 5th ed. San Diego (CA): Elsevier-Academic Press; 2005. p. 922.
  • van Lenteren JC. Integrated pest management in protected crops. In: Dent D, editor. Integrated pest management. London: Chapman & Hall; 1995. p. 311–343.
  • Lenteren JC van, Martin NA, Biological control of whitefly. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y, editors. Integrated pest and disease management in greenhouse crops. Dordrecht, Netherlands: Kluwer Academic Publishers; 1999. p. 202–216.
  • Leake JR, Donnelly DP, Boddy L. Interactions between ecto-mycorrhizal fungi and saprotrophic fungi. In: Van der Heijden MGA, Sanders IR, editors. Mycorrhizal ecology. Heidelberg: Ecological Studies Springer Verlag; 2002. p. 157.
  • Abd-Elsalam KA. Nanoplatforms for plant pathogenic fungi management. Fungal Genome Biol. 2013;2:1–2.
  • Jain K. Nanodiagnostics: application of Nanotechnology (NT) in molecular diagnostics. Expert Rev Mol Diagn. 2003;(2):153–161.
  • Yalcin B, Otles S. Nanobiosensor and food pathogen interaction mechanisms. Electron J Environ Agric Food Chem. 2010;9:1257–1273.
  • Rai M, Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol. 2012;94(2):287–293.
  • Gardeniers JG, van den Berg AA. Lab-on-a-chip systems for biomedical and environmental monitoring. Anal Bioanal Chem. 2004;378(7):1700–1703.
  • Monis PT, Giglio S. Nucleic acid amplification-based techniques for pathogen detection and identification. Infect Genet Evol. 2006;6(1):2–12.
  • Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE. Landscape of next-generation sequencing technologies. Anal Chem. 2011;83(12):4327–4341.
  • Ozsolak F. Third-generation sequencing techniques and applications to drug discovery. Expert Opin Drug Discover. 2012;7(3):231–243.
  • Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4(4):265–270.
  • Zhang J, Chiodini R, Badr A, Zhang GF. The impact of next-generation sequencing on genomics. J Genet Genomics. 2011;38(3):95–109.
  • Fan C, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ. Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci. 2003;100(11):6297–6301.
  • Goluch ED, Nam JM, Georganopoulou DG, Chiesl TN, Shaikh KA, Ryu KS, Barron AE, Mirkin CA, Liu C. A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip. 2006;6(10):1293–1299.
  • Pimentel D. Invasive plants: their role in species extinctions and economic losses to agriculture in the USA. In: Inderjit, editor. Management of invasive weeds, invading nature – Springer Series in invasion ecology. Vol 5.Dordrecht: Springer; 2009. p. 1–7.
  • Lattanzio VMT, Nivarlet N, Lippolis V, Gatta SD, Huet A-C, Delahaut P, Granier B, Visconti A. Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta. 2012;718:99–108.
  • Kaewphinit T, Santiwatanakul S, Chansiri K. Colorimetric DNA based biosensor combined with loop-mediated isothermal amplification for detection of mycobacterium tuberculosis by using gold nanoprobe aggregation. Sens Transducers. 2013;142:123–128.
  • Zhou C, Mu Y, Yang M, Wu Q, Xu W, Zhang Y, Jin W, Song Q, Wu Z, Jin Q. Gold nanoparticles based colorimetric detection of target DNA after loop-mediated isothermal amplification. Chem Res Chin Univ. 2013;29:424–428.
  • Abd-Elsalam KA, Bahkali A, Moslem M, Amin O, Niessen L. An optimized protocol for DNA extraction from wheat seeds and loop-mediated isothermal amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain. Int J Mol Sci. 2011;12(12):3459–3472.
  • Niessen L, Vogel RF. Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int J Food Microbiol. 2010;140(2–3):183–191.
  • Dai TT, Lu CC, Lu J, Dong S, Ye W, Wang Y, Zheng X. Development of a loop-mediated isothermal amplification assay for detection of Phytophthora sojae. FEMS Microbiol Lett. 2012;334(1):27–34.
  • Tomlinson JA, Dickinson, MJ, Boonham N. Rapid detection of Phytophthora ramorum and P. kernoviae by two-minute DNA extraction followed by isothermal amplification and amplicon detection by generic lateral flow device. Phytopathology. 2010;100:143–149.
  • Luo J, Vogel RF, Niessen L. Development and application of a loop-mediated isothermal amplification assay for rapid identification of aflatoxigenic molds and their detection in food samples. Int J Food Microbiol. 2012;159(3):214–224.
  • Niessen L, Gräfenhan T, Vogel RF. ATP citrate lyase 1 (acl1) gene-based loop-mediated amplification assay for the detection of the Fusarium tricinctum species complex in pure cultures and in cereal samples. Int J Food Microbiol. 2012;158:171–185.
  • Denschlag C, Vogel RF, Niessen L. Hyd5 gene-based detection of the major gushing-inducing Fusarium spp. in a loop-mediated isothermal amplification (LAMP) assay. Int J Food Microbiol. 2012;156(3):189–196.
  • Wang L, O’Donoghue MB, Tan W. Nanoparticles for multiplex diagnostics and imaging, Nanomedicine. 2006;1(4):413–426.
  • Thaxton CS, Georganopoulou DG, Mirkin CA. Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta. 2006;363(1–2):120–126.
  • Yang H, Li H, Jiang X. Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluid Nanofluid. 2008;5(5):571–583.
  • Pal S, Ying W, Alocilja EC, Downes FP. Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst Eng. 2008;99(4):461–468.
  • Poonam P, Deo N. Current correlation functions for chemical sensors based on DNA decorated carbon nanotube. N Sens Actuators B: Chem. 2008;135(1):327–335.
  • Wang J, Zhang S, Zhang Y. Fabrication of chronocoulometric DNA sensor based on gold nanoparticles/poly(l-lysine) modified glassy carbon electrode. 2010;396(2):304–309.
  • Dubertret B, Calame M, Libchaber AJ. 2001. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol. 2001;19(4):365–370.
  • Firrao G, Moretti M, Ruiz-Rosquete M, Gobbi E, Locci R. Nanobiotransducer for detecting flavescence dorée phytoplasma. J Plant Pathol. 2005;87(2):101–107.
  • Arya H, Kaul, Z, Wadhwa R, Taira K, Hirano T, Kaul SC. Quantum dots in bio-imaging: revolution by the small. Biochem Biophys Res Commun. 2005;329(4):1173–1177.
  • Dameron CT, Reeser RN, Mehra RK, Kortan, AR, Carroll PJ, Steigerwaldm ML, Brus LE, Winge DR. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature. 1989;338(6216):596–597.
  • Kumar S, Ansary A, Ayoobul A, Absar A, Khan MI. Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol. 2007;3:190–194.
  • Syed A, Ahmad A. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2013;106:41–47.
  • Bao H, Hao N, Yang Y, Zhao D. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 2010;3(7):481–489.
  • Sharon M, Choudhary AK, Kumar RJ. Nanotechnology in agricultural diseases and food safety. J Phytol. 2010;2(4):83–92.
  • Nam JM, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc. 2004;126(19):5932–5933. Available from: http://dx.doi.org/10.1021/ja049384
  • Kankkunen P, Rintahaka J, Aalto A, Leino M, Majuri ML, Alenius H, Wolff H, Matikainen, S. Trichothecene mycotoxins activate inflammatory response in human macrophages. J Immunol. 2009;182(10):6418–6425.
  • Paniel N, Radoi A, Marty J-L. Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk. Sensors. 2010;10(10):9439–9448.
  • Prieto-Simon B, Noguer T, Campas M. Emerging biotools for assessment of mycotoxins in the past decade. Trends Anal Chem. 2007;26:689–702.
  • Baeummer A. Nanosensors identify pathogens in food. Food Technol. 2004;58:51–55.
  • Bhattacharya S, Jang J, Yang L, Akin D, Bashir R. Biomems and nanotechnology based approaches for rapid detection of biological entities. J Rapid Methods Automation Microbiol. 2007;15(1):1–32.
  • Ansari AA, Kaushik A, Pratima R, Solanki Malhotra BD. Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry 2010;77(2):75–81.
  • Mak AC, Osterfeld SJ, Yu H, Wang SX, Davis RW, Jejelowo OA, Pourmand N. Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection. Biosens Bioelectron. 2010;25(7):1635–1639.
  • Actis P, Jejelowo O, Pourmand N. Ultrasensitive mycotoxin detection by STING sensors. Biosens Bioelectron. 2010;26(2):333–337.
  • Panini NV, Bertolino FA, Salinas E, Messina GA, Raba J. Zearalenone determination in corn silage samples using an immunosensor in a continuous-flow/stopped-flow systems. Biochem Eng J. 2010;51(1–2):7–13.
  • Alonso-Lomilloa MA, Domínguez-Renedoa O, Ferreira-Gonc L, Arcos-Martíneza MJ. Sensitive enzyme-biosensor based on screen-printed electrodes for ochratoxin A. Biosens Bioelectron. 2010;25:1333–1337.
  • Puzyr AP, Burov AE, Bondar VS, Trusov YN. Neutralization of aflatoxin b1 by ozone treatment and adsorption by nanodiamonds. Nanotechnol Russian. 2010;5(1–2):137–141.
  • Jaynes WF, Zartman RE, Hudnall WH. Aflatoxin B1 adsorption by clays from water and corn meal. Appl Clay Sci. 2007;36(1–3):197–205.
  • Radoi A, Targa M, Prieto-Simon B, Marty JL. Enzyme-linked … nanoparticles for aflatoxin M1 detection. Talanta. 2008;77(1):138–143.
  • Kaushik A, Solanki PR, Ansari AA, Ahmad S, Malhotra BS. A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology. 2009;20(5):055105.
  • Kaushik A, Arya SK, Vasudev A, Bhansali S. Open J Appl Biosens. 2013;2(1):1–11.
  • Sharma A, Matharu Z, Sumana G, Solanki PR, Kim CG, Malhotra BD. Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. Thin Solid Films. 2010;519(3):1213–1218.
  • Biswal SK, Nayak AK, Parida UK, Nayak PL. Applications of nanotechnology in agriculture and food sciences. Int J Sci Innovations Discov. 2012;2:21–36.
  • Bogue B. Nanosensors: a review of recent progress. Emerald Group Publishing Limited, UK; 2008.
  • Esker PD, Sparks AH, Campbell L, Guo Z, Rouse M, Silwal SD, Tolos S, Van Allen B, Garrett KA. Ecology and epidemiology in R: disease forecasting and validation. [Online]. Plant Health Instructor. 2008. doi:10.1094/PHI-A–029-01
  • Sekhon BS. Food nanotechnology – an overview. J Nanotechnol Sci Appl. 2010;3:1–15.
  • Small J, Call DR, Brockman FJ, Straub TM, Chandler, DP. Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl Environ Microbiol. 2001;67(10):4708–4716.
  • Hashimoto Y, Nakamura H, Koichi AK, Karube I. A new diagnostic method for soil-borne disease using a microbial biosensor. Microbes Environ. 2008;23(1):35–9.
  • Dubas ST, Pimpan V. Green synthesis of silver nanoparticles for ammonia sensing. Talanta. 2008;76(1):29–33.
  • Yao KS, Li, SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP. Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Multi-Funct Mater Struct II. Parts 1 and 2. 2009;79–82:513–516.
  • Etefagh R, Azhir E, Shahtahmasebi N. Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iranian. 2013;20(3):1055–1058.
  • Rosen JE, Yoffe S, Meerasa A, Verma M, Gu FX. Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol. 2011;2(5):1–12.
  • Nie L. Biomedical nanotechnology for optical molecular imaging, diagnostics, and therapeutics. JSM Nanotechnol Nanomed. 2013;1(1):1–2.
  • Mccandless L. Nanotechnology offers new insights into plant pathology. College of Agriculture and Life Sciences News, Cornell University; Summer 2005. p. 17–18.
  • Meng Y, Li, Y, Galvani CD, Hao G, Turner JN, Burr TJ, Hoch HC. Upstream migration of Xylella fastidiosa via Pilus-Driven twitching motility. J Bacteriol. 2005;187(16):5560–5567.
  • González-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A. Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualisation in plant tissues. Ann Bot. 2007;101(1):187–195.