1,175
Views
43
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

The oxidative stress response of the filamentous yeast Trichosporon cutaneum R57 to copper, cadmium and chromium exposure

, , , &
Pages 855-862 | Received 02 Apr 2014, Accepted 27 Jun 2014, Published online: 21 Oct 2014

References

  • Leyval C, Turnau K, Haselwandter K. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza. 1997;7:139–153.
  • Munoz R, Alvarez MT, Munoz A, Terrazas E, Guieysse B, Mattisasson B. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere. 2006;63:903–991.
  • Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40:2799–2815.
  • Yan G, Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii.Water Res. 2003;37:4486–4496.
  • Vasudevan P, Padmavathy V, Dhingra SC. Biosorption of heavy metal ions. Bioresour Technol. 2003;89:281–287.
  • Fridovich I. Oxygen toxicity: a radical explanation. J Exp Biol. 1998;201:1203–1209.
  • Kamiński P, Kurhalyuk N, Szady-Grad M. Heavy metal-induced oxidative stress and changes in physiological process of free radicals in the blood of white stork (Ciconia ciconia) chicks in polluted areas. Polish J Environ Stud. 2007;16(4):555–562.
  • Georgieva N, Peshev D, Rangelova N, Lazarova N. Effect of hexavalent chromium on growth of Trichosporon cutaneum r 57. J Univ Chem Technol Metallurgy. 2011;46(3):293–298.
  • Georgieva N. Growth of Trichosporon cutaneum R 57 in the presence of toxic concentration of cadmium and copper. Int J Agric Biol. 2008;10:325–328.
  • Ivanova N, Yotova L. Biotransformation of furfural by yeast cells covalently bound to cellulose granules. Acta Biotechnol. 1993;13(3):79–82.
  • Yotova L, Tzibranska I, Tileva F, Markx G, Georgieva N. Kinetics of the biodegradation of phenol in wastewaters from the chemical industry by covalently immobilized Trichosporon cutaneum cells. J Ind Microbiol Biotechnol. 2009;36(3):367–372.
  • Blackwell KJ, Singleton I, Tobin JM. Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol. 1995;43:579–584.
  • Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part 1: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1:529–539.
  • Espirito Santo C, Taudte N, Nies DH, Grass G. Contribution of copper ion resistance to survival of Esherichia coli on metallic copper surfaces. Appl Environ Microbiol. 2008;74:977–986.
  • Guillén Y, Machuca Á. The effect of copper on the growth of wood-rotting fungi and a blue-stain fungus. World J Microbiol Biotechnol. 2008;24(1):31–37.
  • Krumova EZ, Pashova SB, Dolashka-Angelova PA, Stefanova T, Angelova MB. Biomarkers of oxidative stress in the fungal strain Humicola lutea under copper exposure. Process Biochem. 2009;44(3):288–295.
  • Dupont CL, Grass G, Rensing C. Copper toxicity and the origin of bacterial resistance – new insights and applications. Metallomics. 2011;3(11):1109–1118.
  • Gokhale NH, Cowan JA. Inactivation of human angiotensin converting enzyme by copper peptide complexes containing ATCUN motifs. Chem Commun (Cambridge). 2005;47(47):5916–5918.
  • Wang S, Teng S, Fan M. Interaction between heavy metals and aerobic granular sludge. In: Kumar Sarkar S, editor. Environmental management. Croatia: Sciyo; 2010. p. 173–188.
  • Chillappagari S, Seubert A, Trip H, Kuipers OP, Marahiel MA, Miethke M. Copper stress affects iron homeostasis by destabilizing iron–sulfur cluster formation in Bacillus subtilis. J Bacteriol. 2010;192(10):2512–2524.
  • Sharma SS, Dietz K-J. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 2009;14(1):43–50.
  • Dávila Costa JS, Albarracín VH, Abate CM. Responses of environmental Amycolatopsis strains to copper stress. Ecotoxicol Environ Saf. 2011;74(7):2020–2028.
  • Debski B, Zalewski W, Gralak MA, Kosala TJ. Chromium–yeast supplementation of chicken broilers in an industrial farming system. Trace Elem Med Biol. 2004;18:47–51.
  • Focardi S, Pepi M, Focardi SE. Microbial reduction of hexavalent chromium as a mechanism of detoxification and possible bioremediation applications. In: Chamy R, Rosenkranz F, editors. Agricultural and biological sciences: “Biodegradation – Life of Science”. Rijeka: InTech; 2013. p. 321–347.
  • Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65–87.
  • Lushchak VI. Oxidative stress as a component of transition metal toxicity in fish. In: Svensson EP, editor. Aquatic toxicology research focus. Hauppaug (NY): Nova Science Publishers Inc.; 2008. p. 1–29.
  • Mendoza-Cozatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 2008;54:249–259.
  • Zhang P, Wang WQ, Zhang GL, Kaminek M, Dobrev P, Xu J, Gruissem W. Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol. 2010;52:653–669.
  • Banjerdkij P, Vattanaviboon P, Mongkolsuk S. Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonas campestris. Appl Environ Microbiol. 2005;71(4):1843–1849.
  • Georgieva N, Alexieva Zl. Selection and characterization of L-ethionine resistant mutants of Trichosporon cutaneum. Z Naturforsch. 2005;60c:657–660.
  • Angelova M, Genova L, Slokoska L, Pashova S. Effect of glucose on the superoxide dismutase production in fungal strain Humicola lutea. Can J Microbiol. 1995;41:978–983.
  • Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44:276–287.
  • Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195:133–140.
  • Hassan HM, Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys. 1979;196:385–395.
  • Pick E, Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46:211–226.
  • Levine R, Garland D, Oliver C, Amici A, Climent I, Lenz A, Ahn B, Shaltiel S, Stadtman E. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymology. 1990;186:464–478.
  • Adachi H, Ishii N. Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 2000;55:B280–B285.
  • Becker A. A method for glycogen determination in whole yeast cells. Anal Biochem. 1978;86:56–64.
  • Vandercammen A, Francois J, Her H. Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Saccharomyces cerevisiae. Eur J Biochem. 1989;182(5):613–620.
  • Parrou JL, Francois J. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem. 1997;248:186–188.
  • Somogyi M. Notes on sugar determination. J Biol Chem. 1952;195:19–23.
  • Lowry OH, Rosenbrough HJ, Faar AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275.
  • Kumar A, John L, Maity S, Manchanda M, Sharma A, Saini N, Chakraborty K, Sengupta S. Converging evidence of mitochondrial dysfunction in a yeast model of homocysteine metabolism imbalance. J Biol Chem. 2011;286:21779–21795. Available from: http://www.jbc.org/content/286/24/21779.full
  • Osiewacz HD, Stumpferl SW. Metabolism and aging in the filamentous fungus Podospora anserina. Arch Gerontol Geriatr. 2001;32:185–197.
  • Azevedo MM, Carvalho A, Pascoal C, Rodrigues F, Cássi F. Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Sci Total Environ. 2007;377(2–3):233–243.
  • Lubaina AS, Meenu Krishnan VG, Murugan K. Induction of oxidative stress and antioxidative response mechanisms in Octoblepharum albidum hedw. A bryophyte under desiccation – rehydration stress. Indian J Plant. 2013;2(3):12–22.
  • Liu P, Brown S, Goktug T, Channathodiyil P, Kannappan V, Hugnot J-P, Guichet P-O, Bian X, Armesilla AL, Darling JL, Wang W. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Br J Cancer. 2012;107:1488–1497.
  • Aileen Pogue I, Jones BM, Bhattacharjee S, Percy ME, Zhao Y, Lukiw WJ. Induced generation of ROS in human brain cells: detection using an isomeric mixture of 5- and 6-carboxy-2′,7′-dichlorofluorescein diacetate (carboxy-DCFDA) as a cell permeant tracer. Int J Mol Sci. 2012;13(8):9615–9626.
  • Poljsak B, Pòcsì I, Pesti M. Interference of chromium with cellular functions. In: Banfalvi G, editor. Cellular effects of heavy metals. London: Springer; 2011. p. 59–86. ISBN 978-94-007-0428-2.
  • Wang R, Gao F, Guo B-Q, Huang J-C, Wang L, Zhou Y-J. Short-term chromium-stress-induced alterations in the maize leaf proteome. Int J Mol Sci. 2013;14:11125–11144.
  • Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995;18:321–336.
  • Wang W, Lampi MA, Huang X-D, Gerhardt K, Dixon DG, Greenberg BM. Assessment of mixture toxicity of copper, cadmium, and phenanthrenequinone to the marine bacterium vibrio fischeri. Environ Toxicol. 2008;24(2):166–177.
  • Amrita Nargund AM, Avery SV, Houghton JE. Cadmium induces a heterogeneous and caspase-dependent apoptotic response in Saccharomyces cerevisiae. Apoptosis. 2008;13(6):811–821.
  • Lin CY, Trinh NN, Fu S-F, Hsiung Y-C, Chia L-Ch, Lin C-W, Huang H-J. Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol. 2013;81:507–522.
  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem. 2000;275:27393–27398.
  • Francois J, Parrou JL. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001;25:125–145.
  • Westwater C, Balish E, Schofield D. Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryotic Cell. 2005;4(10):1654–1661.
  • Gasch AP. The environmental stress response: a common yeast response to environmental stresses. In: Hohmann S, Mager P, editors. Yeast stress responses. Topics in Current Genetics (series editor Hohmann), vol. 1. Heidelberg: Springer-Verlag; 2002. p. 11–70.
  • Gomes LC. Physiological responses of pirarucu (Arapaima gigas) to acute handling stress. Acta Amazonica. [online] 2007;37(4):629–633.
  • Sreenivasa Reddy A, Reddy MV, Radhakrishnaiah K. Impact of copper on the oxidative metabolism of the fry of common carp, Cyprinus carpio (Linn.) at different pH. J Environ Biol. 2008;29(5):721–724.
  • Emad H, Naga AEL, Khalid M, Moselhy EL, Hamed MA. Toxicity of cadmium and copper and their effect on some biochemical parameters of marine fish, Mugil seheli. Egypt J Aquatic Res. 2005;31:60–71.
  • Ocón A, Hampp R, Requena N. Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytologist. 2007;174(4):879–891.
  • Bai Z, Harvey LM, Mcneil B. Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol. 2003;23:267–302.
  • Romandini P, Tallandini L, Beltramini M, Salvato B, Manzano M, De Bertoldi M, Rocoo GP. Effects of copper and cadmium on growth, superoxide dismutase and catalase activities in different yeast strains. Comp Biochem Physiol. 1992;103C:255–262.
  • Belozerskaya T, Aslanidi K, Ivanova A, Gessler N, Egorova A, Karpenko Yu, Olishevskaya S. Characteristics of extremophylic fungi from chernobyl nuclear power plant. In: Mendez-Vilas A, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Vol. 1. Badajoz (Spain): Formatex Research Center; 2010. p. 88–94.
  • Chattopadhyay MK, Raghu G, Sharma YVRK, Biju AR, Rajasekharan MV, Shivaji S. Increase in oxidative stress at low temperature in an antarctic bacterium. Curr Microbiol. 2011;62(2):544–546.