601
Views
0
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Heterologous expression of glutamyl-tRNA reductase gene in Rhodobacter sphaeroides O.U.001 to enhance 5-aminolevulinic acid production

&
Pages 1034-1041 | Received 16 Apr 2014, Accepted 14 Jul 2014, Published online: 07 Nov 2014

References

  • Sasaki K, Watanabe M, Tanaka T, Tanaka T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol. 2002;58:23–29.
  • Miyachi N, Tanaka T, Nishikawa S, Takeya H, Hotta Y. Preparation and chemical properties of 5-aminolevulinic acid and its derivatives. Porphyrins. 1998;7:342–347.
  • Kamiyama H, Hotta Y, Tanaka T, Nishikawa S, Sasaki K. Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacterium. Seibutsu Kogaku Kaishi. 2000;78:48–55.
  • Ano A, Funahashi H, Nakano K, Nishizawa Y. Effect of glycine on 5-aminolevulinic acid biosynthesis in heterotrophic culture of Chlorella regularis YA-603. J Biosci Bioeng. 1999;88:57–60.
  • Pandey U, Pandey J. Enhanced production of δ-aminolevulinic acid, bilipigments, and antioxidants from tropical algae. Biotechnol Bioprocess Eng. 2009;14:316–321.
  • Liang J, Burris HR. Hydrogen burst associated with nitrogenase-catalyzed reactions. Proc Natl Acad Sci USA. 1988;85:9446–9450.
  • Hustede E, Steinbüchel A, Schlegel HG. Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Appl Microbiol Biot. 1993;39:87–93.
  • Özgür E, Mars AE, Peksel B, Louwerse A, Yücel M, Gündüz U, Claassen PAM, Eroğlu İ. Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrogen Energy. 2010;35:511–517.
  • Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol. 1983;1:784–791.
  • Kovach EM, Elzer HP, Hill SD, Robertson TG, Farris AM, Roop MR, Peterson MK. Four new derivatives of the broad host range cloning vector pBBR1MCS, carrying different antibiotics-resistance cassettes. Gene. 1995;166:175–176.
  • Kars G, Alparslan Ü. Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int J Hydrogen Energy. 2013;38:14488–14494.
  • Biebl H, Pfennig N. Isolation of member of the family Rhodosprillaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG, editors. The prokaryotes. Vol. 1. New York (NY): Springer; 1981. p. 267–273.
  • Choi C, Hong BS, Sung HC, Lee HS, Kim JH. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol Lett. 1999;21:551–554.
  • Mauzerall D, Granick S. The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. J Biol Chem. 1956;219:435–446.
  • Marrs B, Kaplan S. 23 s precursor ribosomal RNA of Rhodopseudomonas spheroides. J Mol Biol. 1970;49: 297–317.
  • Kars G, Gündüz U, Yücel M, Türker L, Eroğlu İ. Hydrogen production and transcriptional analysis of nifD, nifK and hupS genes in Rhodobacter sphaeroides O.U.001 grown in media with different concentrations of molybdenum and iron. Int J Hydrogen Energy. 2006;31:1536–1544.
  • Kars G, Gündüz U, Yücel M, Rakhely G, Kovacs K, Eroğlu İ. Evaluation of hydrogen production by Rhodobacter sphaeroides O.U.001 and its hupSL deficient mutant using acetate and malate as carbon sources. Int J Hydrogen Energy. 2009;34:2184–2190.
  • Yiğit DÖ, Gündüz U, Türker L, Yücel M, Eroğlu İ. Identification of by-products in hydrogen producing bacteria; Rhodobacter sphaeroides O.U. 001 grown in the waste water of a sugar refinery. J Biotechnol. 1999;70:125–131.
  • Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrogen Energy. 2008;33:4981–4988.
  • Tangprasittipap A, Prasertsan P, Choorit W, Sasaki K. Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides. Biotechnol Lett. 2007;29:773–778.