686
Views
2
CrossRef citations to date
0
Altmetric
Article; Pharmaceutical Biotechnology

Biological evaluation of new potential anticancer agent for tumour imaging and radiotherapy by two methods: 99mTc-radiolabelling and EPR spectroscopy

, , , , &
Pages 1172-1180 | Received 24 Apr 2014, Accepted 20 May 2014, Published online: 25 Nov 2014

References

  • Eary JF, Press OW. High dose radioimmunotherapy in malignant lymphoma. Recent Results Cancer Res. 1996;141:177–182.
  • De Nardo G, Malik E, Whitec CA, Wisemand G, De Nardoa S. Role of radiation dosimetry in radioimmunotherapy planning and treatment dosing. Crit Rev Oncol Hematol. 2001;39(1–2):203–218.
  • Humblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG, Kissler KM, Bernhardr SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10:7063–7070.
  • Theobald AE. Theory and practice. In: Sampson CB, editor. Text-book of radiopharmacy. New York (NY): Gorden and Breach; 1990. p. 127–128.
  • Saha GB. Methods of radiolabeling. In: Saha GB, editor. Physics and radiobiology of nuclear medicine. New York (NY): Springer-Verlag; 1993. p. 100–106.
  • Liu S, Edwards DS. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev. 1999;99:2235–2268.
  • Arulsudar N, Subramanian N, Mishra P, Sharma RK, Murthy RSR. Preparation, characterization, and biodistribution of 99m-Tc-labeled leuprolide acetate liposomes in eat tumor. AAPS PharmSci. 2004;6(1) Article 5; 1–12. Available from: http://www.aapspharmsci.org.
  • Chuttani K, Mishra P, Chopra M, Panwar P, Sharma RK, Mishra AK. Radiolabelling and biological evaluation of a non-peptidic compound from Terminalia chebula (Harar) for CCK expressing tumours. Indian J Nucl Med. 2003;18:19–24.
  • Gadzheva V, Zheleva A, Raikova E. Modulating effect of new potential antimelanomic agents, spin-labeled triazenes and nitrosoureas on DOPA-oxidase activity of tyrosinase. Cancer Biochem Biophys. 1999;17(1–2):99–108.
  • Gadzheva V, Koldamova R. Spin-labeled 1-alkyl-1–nitrosourea synergists of antitumor antibiotics. Anti-cancer Drug Des. 2001;16(4–5):247–253.
  • Gadzheva V, Ichimori K, Raikov Z, Nakazawa H. New method to measure the carbamoylating activity of nirtosoureas by electron paramagnetic resonance spectroscopy. Free Radic Res. 1997;27:197–206.
  • Zheleva A, Gadjeva V. Spin-labeled nitrosoureas and triazens and their nonlabeled clinically used analogues – a comparative study on their physicochemical properties and antimelanomic effects. Int J Pharm. 2001;212:257–266.
  • Raikov Z, Todorov D, Ilarionova M, Demirov G, Tsanova T, Kafalieva D. Synthesis and study of spin-labeled nitrosoureas. Cancer Biochem Biophys. 1985;7(4):343–348.
  • Gnewuch C. T. and Sosnovsky G. A critical appraisal of the evolution of N-nitrosoureas as anticancer drugs. Chem Rev. 1997;97(3):829–1013.
  • Gadjeva V, Raikov Z. Synthesesandantitumoractivityof 4-{N′-[N-(2-chloroethyl)-N-nitrosocarbamoyl]hydrazono}-2,2,6,6-tetramethylpiperidine-1-oxyl. Die Pharmazie. 1999;54(13):231–232.
  • Gadjeva V, Ichimory K, Nakazawa H, Raikov Z. Superoxide scavenging activity of spin-labeled nitrosourea and triazene derivatives. Free Radic Res. 1994;21(3):177–186.
  • Gadjeva V, Tolekova A, Vasileva M. Effect of spin labeled 1-ethyl-1-nitrosourea on CCNU-induced oxidative injury. Die Pharmazie. 2007;62(8):608–613.
  • Gadjeva V, Grigorov B, Nikolova G, Tolekova A, Zheleva A, Vasileva M. Protective effect of spin-labeled 1-ethyl-1-nitrosourea against oxidative stress in liver induced by antitumor drugs and radiation. Bio Med Res Int. 2014;4(5);ID 48482.
  • Berliner JL, Fujii H. Magnetic resonance imaging of biological specimens by electron paramagnetic resonance of nitroxide spin labels. Science. 1985;227:517–519.
  • Zweier JL, Kuppusamy P. Electron paramagnetic resonance measurements of free radicals in the intact beating heart: a technique for detection and characterization of free radicals in whole biological tissues. Proc Natl Acad Sci. 1988;85:5703–5707.
  • Zhelev Z, Bakalova R, Aoki I, Matsumoto K, Gadjeva V, Anzai K, Kanno I. Nitroxyl radicals as low toxic spin-labels for non-invasive magnetic resonance imaging of blood-brain barrier permeability for conventional therapeutics. Chem Commun (Cambridge). 2009;7:53–55.
  • Chen XJ, Li L, Liu F, Liu BL. Synthesis and biological evaluation of technetium-99m labeled deoxy glucose derivatives as imaging agents for tumor. Med Chem Lett. 2006;16:5503–5506.
  • Ilgan S, Yang DJ, Higuchi T, Zareneyrizi F, Bayhan H, Yu D, Kim EE, Podoloff DA. 99mTc-ethylenedicysteine-folate: a new tumor imaging agent, synthesis, labeling, and evaluation in animals. Cancer Biotherapy Radiopharm. 1998;13(6):427–435.
  • Richardson VJ, Jeyasingh K, Jewkes RF. Properties of [99mTc] technetium labeled liposomes innormal and tumor bearing rats. Biochem Soc Trans. 1977;5:290–291.
  • Halpern HJ, Spencer DP, Polen JV, Bowman MK, Nelson AC, Dowey EM, Teicher BA. Imaging radio frequency electron spin resonance spectrometer with high resolution and sensitivity for in vivo measurements. Rev Sci Instruments. 1989;60:1040–1050.
  • Gadzheva V, Raikova E, Raikov Z, Ivanova T, Stefanova M. Investigation of some physiochemical properties of new nitrosourea derivatives-potential antitumor agents. Comptes Rendus L’Academie Bulgarienne Sciences. 1989;42:131.
  • Zhelev Z, Bakalova R, Aoki I, Matsumoto K, Gadjeva V, Anzai K, Kanno I. Nitroxyl radicals for labeling of conventional therapeutics and noninvasive magnetic resonance imaging of their permeability for blood-brain barrier: relationship between structure, blood clearance, and MRI signal dynamic in the brain. Mol Pharm. 2009;6:504–512.
  • Simeonova M, Ivanova T, Raikov Z, Konstantinov H. Tissue distribution of polybutylcyanoacrylate nanoparticles loaded with spin-labeled nitrosourea in Lewis lung carcinoma-bearing mice. Acta Physiol Pharmacol Bulgaria. 1994;20:77–82.
  • Kuppusamy P, Chzhan M, Zweier JL. Development and optimization of three-dimensional spatial EPR imaging for biological organs and tissues. J Magn Reson Ser B. 1995;106:122–130.
  • Keana JF, Pou S, Rosen GM. Nitroxides as a potential contrast enhancing agents for MRI application: influence of structure on the rate of reduction by rat hepatocytes, whole liver homogenate, subcellular fractions, and ascorbate. Magn Reson Med. 1987;5:525–536.
  • Hyodo F, Chuang KH, Goloshevsky AG, Sulima A, Griffiths GL, Mitchell JB, Koretsky AP, Krishna MC. Brain redox imaging using blood-brain barrier-permeable nitroxide MRI contrast agent. J Cereb Blood Flow Metab. 2008;28:1165–1174.
  • Hahn SM, Krishna CM, Mitchell JB. New directions for free radical cancer research and medical applications. Adv Exp Med Biol. 1994;366:241–251.
  • Hahn SM, Krishna CM, Samuni A, Cuscela DO, Johnstone P, Mitchell JB. Potential use of nitroxides in radiation oncology. Cancer Res. 2004;54:2006–2010.
  • Sano H, Naruse M, Matsumoto K, Oi T, Utsumi H. A new nitroxyl-probe with high retention in the brain and its application for brain imaging. Free Radic Biol Med. 2000;28:959–969.
  • Zhelev Z, Matsumoto K, Gadjeva V, Bakalova R, Aoki I, Zheleva A, Anzai K. EPR signal reduction kinetic of several nitroxyl derivatives in blood in vitro and in vivo. Gen Physiol Biophys. 2009;28:356–362.
  • Buchsbaum DJ, Zhou T, Grizzle WE, Oliver PJ, Hammond CJ, Zhang S, Carpenter M, Lo Buglio AF. Antitumor efficacy of TRA-8 anti-DR5 monoclonal antibody alone or in combination with chemotherapy and/or radiation therapy in a human breast cancer model. Clin Cancer Res. 2009;15:1128–1132.