3,154
Views
69
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Bacillus safensis LAU 13: a new source of keratinase and its multi-functional biocatalytic applications

, &
Pages 54-63 | Received 21 Jun 2014, Accepted 22 Jul 2014, Published online: 01 Dec 2014

References

  • Venkata NE, Divakar G. Production of keratinase by using Pseudomonas aeruginosa isolated from poultry waste. Int J Pharm Chem Biol Sci. 2013;3:79–86.
  • Vigneshwaran C, Shanmugam S, Kumar TS. Screening and characterization of keratinase from Bacillus licheniformis isolated from namakkal poultry farm. Researcher. 2010;2(4):89–96.
  • Selvam K, Vishnupriya B. Biochemical and molecular characterization of microbial keratinase and its remarkable applications. Int J Pharm Biol Arch. 2012;3(2):267–275.
  • Nickerson WJ, Durand SC Keratinase II. Properties of the crystalline enzyme. Biochimica Biophysica Acta. 1963;77:87–99.
  • Brandelli A. Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol. 2008;1:105–116.
  • Ramnani P, Singh R, Gupta R. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol. 2005;51:191–196.
  • Lateef A, Oloke JK, Gueguim Kana EB, Sobowale BO, Ajao SO, Bello BY. Keratinolytic activities of a new feather-degrading isolate of Bacillus cereus LAU 08 isolated from Nigerian soil. Int Biodeterioration Biodegradation. 2010;64:162–165.
  • Agrahari S. Production of extracellular keratinase enzymes from Bacillus pumilis SN3 isolated from soil sample of Ghazipur poultry waste site. Int J Sustainable Dev Green Econ. 2013;2:2–6.
  • Chaturvedi V, Bhange K, Bhatt R, Verma P. Production of keratinases using chicken feathers as substrate by a novel multifunctional strain of Pseudomonas stutzeri and its dehairing application. Biocatalysis Agric Biotechnol. 2014;3:176–174.
  • Xu B, Zhong Q, Tang X, Yang Y, Huang Z. Isolation and characterization of a new keratinolytic bacterium that exhibits significant feather-degrading capability. Afr J Biotechnol. 2009;8(18):4590–4596.
  • Anwar MS, Siddique MT, Verma A, Rao YR, Nailwal T, Ansari M, Pande V. Multitrait plant growth promoting (PGP) rhizobacterial isolates from Brassica juncea rhizosphere: Keratin degradation and growth promotion. Communicative Integr Biol. 2014;7. doi: 10.4161/cib.27683.
  • Saber WIA, El-Metwally MM, El-Hersh MS. Keratinase production and biodegradation of some keratinous wastes by Alternaria tenuissima and Aspergillus nidulans. Res J Microbiol. 2010;5:21–35.
  • Mini KD, Mini KP, Mathew J. Screening of fungi isolated from poultry farm soil for keratinolytic activity. J Advanced Appl Sci Res. 2012;3:2073–2077.
  • Matikevičiene V, Grigiškis S, Levišauskas D, Sirvydytė K, Dižavičienė O, Masiliūnienė O, Ančenko O. Optimization of keratinase production by Actinomyces fradiae 119 and its application in degradation of keratin containing wastes. Environ Technol Resour. 2011;8:294–300.
  • Ko HS, Kim HS. Isolation of mutant strains from keratinase producing Bacillus subtilis SMMJ-2 and comparison of their enzymatic properties. Korean Soc Biotechnol Bioeng J. 2010;25:429–436.
  • Wu X, Wang J, Zhuang Y, Cao Z. Induction and selection of Stenotrophomonas maltophilia DHHJ for feather degradation. Biomed Eng Biotech (iCBEB). 2012;1521–1524. doi: 10.1109/iCBEB.2012.248.
  • Mazotto AM, Coelho RRR, Cedrola SML, Lima M, Couri S, Vermelho AB. Keratinase production by three Bacillus spp. using feather meal and whole feather as substrate in a submerged fermentation. Enzym Res. 2011;1–7. doi: 10.4061/2011/523780.
  • Mohanapriya M, Parvathi L, Archana B, Suneetha V. A potential beta-keratin degrading bacteria from Vellore Emu feather dumped soil. Int J Pharm Sci Rev Res. 2014;25(1):224–228.
  • Brenner DJ, Krieg NR, Staley JT. Bergey's manual of systematic bacteriology. 2nd ed., Part B. New York, NY: Springer; 2004. p. 323–358.
  • Sambrook J, Fritch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989.
  • Evans R, Hershberger E, Day T, Combs L. The effect of ultraviolet light on Serratia marcescens. Principles of Biology II Lab. Manchester College, Science Building; 2004 [ cited 2013 Aug 7]. Available from: http://users.manchester.edu/student/RSEvans/Webpage/Mutations.pdf
  • Cheng SW, Hu HM, Shen SW, Takagi H, Asano M, Tsai YC. Production and characterization of a feather degrading Bacillus licheniformis PWD-1. Biosci Biotechnol Biochem. 1995;59:2239–2243.
  • Ramnani P, Gupta R. Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnol Appl Biochem. 2004;40:491–496.
  • Verma A, Pal HS, Singh R, Agarwal S. Potential of alkaline protease isolated from Thermoactinomyces sp. RM4 as an alternative to conventional chemicals in leather industry dehairing process. Int J Agric Environ Biotechnol. 2011;4:173–178.
  • Kumar D, Bhalla TC. Bacillus sp. APR-4 protease as a laundry additive. Indian J Biotechnol. 2004;3:563–567.
  • Gupta R, Ramnani P. Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol. 2006;70:21–33.
  • Prakash P, Jayalakshmi SK, Sceeramulu K. Production of keratinase by free and immobilized cells of Bacillus halodurans strain PPKS-2: partial characterization and its application in feather degradation and dehairing of the goat skin. Appl Biochem Biotechnol. 2010;160:1909–1920.
  • Sahoo DK, Das A, Thatoi H, Mondal KC, Mohapatra PKD. Keratinase production and biodegradation of whole chicken feather keratin by a newly isolated bacterium under submerged fermentation. Appl Biochem Biotechnol. 2012;167:1040–1051.
  • Tiwary E, Gupta R. Rapid conversion of chicken feather to feather meal using dimeric keratinase from Bacillus licheniformis ER-15. J Bioprocess Biotechnol. 2013;2:123. doi: 10.4172/2155-9821.1000123.
  • Tork SE, Shahein YE, El-Hakim AE, Abdel-Aty AM, Aly MM. Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. Int J Biol Macromol. 2013;55:169–175.
  • Cai C, Lou B, Zheng X. Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis. J Zhejiang Univ Sci. 2008;9(1):60–67.
  • Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson B. Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzym Microb Technol. 2003;32:519–524.
  • Kim JM, Lim WJ, Suh HJ. Feather-degrading Bacillus species from poultry waste. Process Biochem. 2001;37:287–291.
  • Rozs M, Manczinger L, Vagvolgyi C, Kevei F. Secretion of a trypsin-like thiol protease by a new keratinolytic strain of Bacillus licheniformis. FEMS Microbiol Lett. 2001;205:221–224.
  • Takami H, Nogi Y, Horikoshi K. Reidentification of the keratinase-producing facultatively alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans. Extremophiles. 1999;3:293–296.
  • Williams CM, Richter CS, Mackenzie JM Jr, Shih JCH. Isolation, identification and characterization of a feather degrading bacterium. Appl Environ Microbiol. 1990;56:1509–1515.
  • Satomi M, Myron T, Duc L, Venkateswaran K. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int J Syst Evol Microbiol. 2006;56:1735–1740.
  • Wei WM, Chen MS, Han DH, Dong L, Zhao GH, Wei XL. Genetic diversity of Bacillus spp., predominant endophytic bacteria in root nodules of Glycine max, in Shaanxi province of China. 2013 [ cited 2014 Mar 3]. Available from: www.ncbi.nlm.nih.gov/nucleotide/519301187
  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol. 2012;29:789–803.
  • Kothari VV, Kothari RK, Kothari CR, Bhatt VD, Nathani NM, Koringa PG, Joshi CG, Vyas BRM. Genomic sequence of salt-tolerant Bacillus safensis strain VK, isolated from saline desert area of Gujarat, India. Genome A. 2013;1:00671–713.
  • Tian T, Feng H. Quantity and diversity of bacteria isolated from fresco surface in the XianXiu Xu's grave,Taiyuan,China. 2013 [ cited 2014 Mar 3]. Available from: http://www.ncbi.nlm.nih.gov/nucleotide/459358255
  • Li H, Dong N, Yu Y, Zhang D. Diversity of culturable bacteria of the cold desert soil from Grove Mountains, East Antarctica. 2013 [ cited 2014 Mar 3]. Available from: http://www.ncbi.nlm.nih.gov/nucleotide/456371492
  • Achari GA, Ramesh R. Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. 2014 [ cited 2014 Mar 3]. Available from: http://www.ncbi.nlm.nih.gov/nucleotide/570349274
  • Cheng G. Diversity of culturable endophytic bacteria isolated from the Populus euphratica at Shayar County. 2012 [ cited 2014 Mar 3]. Available from: http://www.ncbi.nlm.nih.gov/nucleotide/384254810
  • Fernandes V, Ramaiah N, Meena RM. Marine zooplankton-associated bacteria. 2013 [ cited 2014 Mar 3]. Available from: http://www.ncbi.nlm.nih.gov/nucleotide/565822323
  • Lin M, Fan T. Analysis of the bacterial community structure in tilapia. 2013 [ cited 2014 Mar 3]. Available from: http://www.ncbi.nlm.nih.gov/nucleotide/452108484
  • Bashir Z, Kondapalli VK, Adlakha N, Sharma A, Bhatnagar RK, Chandel G, Yazdani SS. Diversity and functional significance of cellulolytic microbes living in termite, pill-bug and stem-borer guts. 2013 [ cited 2014 Mar 3]. Available from: http://www.ncbi.nlm.nih.gov/nucleotide/451775297
  • Nath A, Chakrabarty S, Sarkar S, Bhattacharjee C, Drioli E, Chowdhury R. Purification and characterization of β-galactosidase synthesized from Bacillus safensis (JUCHE 1). Ind Eng Chem Res. 2013;52:11663–11672.
  • Singh RS, Singh RP, Yadav M. Molecular and biochemical characterization of a new endoinulinase producing bacterial strain of Bacillus safensis AS-08. Biologia. 2013;68:1028–1033.
  • Kumar D, Parshad R, Gupta VK. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43. Int J Biol Macromol. 2014;66:97–107.
  • Berrada I, Benkhemmar O, Swings J, Bendaou N, Amar M. Selection of halophilic bacteria for biological control of tomato gray mould caused by Botrytis cinerea. Phytopathologia Mediterranea. 2012;51:625–630.
  • Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS. Green synthesis of silver nanoparticles by using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett. (in press). doi: 10.1007/s40089-014-0133-4.
  • Son HJ, Park HC, Kim HS, Lee CY. Nutritional regulation of keratinolytic activity in Bacillus pumilus. Biotechnol Lett. 2008;30:461–465.
  • Arasu VT, Sivakumar T, Ramasubramanian V, Nalini K, Kiruthiga R. The potential application of keratinase from Bacillus sp. as plant growth promoters. J Pure Appl Microbiol. 2009;3:583–590.
  • Rayudu K, Jayaraj YM, Ravi M, Anjum S. Ratinolytic protease production from keratinaceous wastes. J Recent Adv Appl Sci. 2013;28:69–72.
  • Riffel A, Lucas F, Heeb P, Brandelli A, Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol. 2003;179:258–265.
  • Anbu P, Gopinath SCB, Hilda A, Lakshmipriya T, Annadurai G. Purification of keratinase from poultry farm isolate Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzym Microb Technol. 2005;36:639–647.
  • Revathi K, Shaifali S, Mohd AK, Suneetha V. A potential strain of keratinolytic bacteria VIT RSAS2 from Katpadi and its pharmacological benefits. Int J Pharm Sci Rev. 2013;20:89–92.
  • Kanchana R, Mesta D. Native feather degradation by a keratinophilic fungus. Int J ChemTech Res. 2013;5(6):2947–2954.
  • Kanchana R. Utilization of biodegradable keratin containing wastes by enzymatic treatment. Int J Pharm Biol Sci. 2013;4(1):117–126.
  • Saber WIA, El-Metwally MM, El-Hersh MS. Keratinase production and biodegradation of some keratinous wastes by Alternaria tenuissima and Aspergillus nidulans. Res J Microbiol. 2010;5(1):21–35.
  • Thys RCS, Lucas FS, Riffel A, Heeb P, Brandelli A. Characterization of a protease of a feather-degrading Microbacterium species. Lett Appl Microbiol. 2004;39:181–186.
  • Farag AM, Hassan MA. Purification, characterization and immobilization of a kearatinase from Aspergillus oryzae. Enzym Microb Technol. 2004;34:85–93.
  • Jeong JH, Jeon YD, Lee O, Kim JD, Lee NR, Park GT, Son HJ. Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation. 2010;21(6):1029–1040.
  • Liu B, Zhang J, Li B, Liao X, Du G, Chen J. Expression and characterization of extreme alkaline, oxidation-resistant keratinase from Bacillus licheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing. World J Microbiol Biotechnol. 2013;29:825–832.
  • Huang Q, Peng Y, Li X. Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr Microbiol. 2003;43:169–173.
  • Cao Z, Zhang Q, Wei D, Chen L, Jing J, Wang X, Zhang M, Zhou J. Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. Ind Microbiol Biotechnol. 2009;36:181–188.
  • Govinden G, Puchooa D. Isolation and characterization of feather degrading bacteria from Mauritian soil. Afr J Biotechnol. 2012;11(71):13591–13600.
  • Suntornsuk W, Suntornsuk L. Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresour Technol. 2003;86:239–243.
  • Manczinger L, Rozs M, Vagvolgyi C, Kevei F. Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J Microbiol Biotechnol. 2003;19:35–39.
  • Daroit DJ, Correa APF, Brandelli A. Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int Biodeterioration Biodegradation. 2009;63:358–363.
  • Bach E, Cannavan FS, Duarte FRS, Taffarel JAS, Tsai SM, Brandelli A. Characterization of feather-degrading bacteria from Brazilian soils. Int Biodeterioration Biodegradation. 2011;65:102–107.
  • Thangam EB, Nagarajan T, Rajkumar SG, Chandrababu NK. Application of alkaline protease isolated from Alkaligens faecalis for enzymatic unhairing in tanneries. J Am Leath Chem Ass. 2001;96:127–132.
  • Shrinivas D, Naik GR. Characterization of alkaline thermostable keratinolytic protease from thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Int Biodeterioration Biodegradation. 2011;65:29–35.
  • Paul T, Das A, Mandal A, Jana A, Maity C, Adak A, Halder SK, DasMohapatra PK, Pati BR, Mondal KC. Effective dehairing properties of keratinase from Paenibacillus woosongensis TKB2 obtained under solid state fermentation. Waste Biomass Valorization. 2013;5:97–107.
  • Paul T, Das A, Mandal A, Halder SK, Jana A, Maity C, DasMohapatra PK, Pati BR, Mondal KC. An efficient cloth cleaning properties of a crude keratinase combined with detergent: towards industrial viewpoint. J Cleaner Prod. 2013;66:672–684.