1,511
Views
12
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Optimization of lipase production on agro-industrial residue medium by Pseudomonas fluorescens (NRLL B-2641) using response surface methodology

, &
Pages 64-71 | Received 17 Jun 2014, Accepted 11 Oct 2014, Published online: 16 Dec 2014

References

  • Kumar S, Katiyar N, Ingle P, Negi S. Use of evolutionary operation (EVOP) factorial design technique to develop a bioprocess using grease waste as a substrate for lipase production. Bioresour Technol. 2011;102:4909–4912.
  • Ramani K, John KL, Ramakrishnan M, Sekaran G. Purification, characterization and application of acidic lipase from Pseudomonas gessardii using beef tallow as a substrate for fats and oil hydrolysis. Process Biochem. 2010;45:1683–1691.
  • Ellaiah P, Prabhakar T, Ramakrishna B, Thaer TA, Adinarayana K. Production of lipase by immobilized cells of Aspergillus niger. Process Biochem. 2004;39:525–528.
  • Costas M, Deive FJ, Longo MA. Lipolytic activity in submerged cultures of Issatchenkia orientalis. Process Biochem. 2004;39:2109–2114.
  • Gombert AK, Pinto AL, Castilho LR, Freire DG. Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Process Biochem. 1999;35:85–90.
  • Açıkel U, Erşan M, Açıkel YS. Optimization of critical medium components using response surface methodology for lipase production by Rhizopus delemar. Food Bioprod Process. 2010;88:31–39.
  • Colla LM, Rizzardi J, Pinto MH, Reinehr CO, Bertolin TE, Costa JAV. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresour Technol. 2010;101:8308–8314.
  • Ul-Haq I, Idrees S, Rajoka MI. Production of lipases by Rhizopus oligosporous by solid-state fermentation. Process Biochem. 2002;37:637–641.
  • Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv. 2001;19:627–662.
  • Matsuoka H, Miura A, Hori K. Symbiotic effects of a lipase-secreting bacterium, Burkholderia arboris sl1b1, and a glycerol-assimilating yeast, Candida cylindracea SL1B2, on triacylglycerol degradation. J Biosci Bioeng. 2009;107:401–408.
  • Godoy MG, Melissa LEG, Maciel FM, Felix SP, Bevilaqua JV, Machado OLT, Freire DMG. Use of a low-cost methodology for biodetoxification of castor bean waste and lipase production. Enzyme Microb Technol. 2009;44:317–322.
  • Nagy V, Toke ER, Keong LC, Szatzker G, Ibrahim D, Szakacs G, Poppe L. Kinetic resolutions with novel, highly enantioselective fungal lipases produced by solid state fermentation. J Mol Catal B Enzym. 2006;39:141–148.
  • Elibol M, Antonio RM. Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation. Process Biochem. 2005;40:1951–1956.
  • Gutarra MLE, Godoy MG, Maugeri F, Rodrigues MI, Freire DMG, Castilho LR. Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour Technol. 2009;100:5249–5254.
  • Rigo E, Ninow JL, Luccio MD, Oliveira JV, Polloni AE, Remonatto D, Vardanega R, Oliveira D, Treichel H. Lipase production by solid fermentation of soybean meal with different supplements. Food Sci Technol. 2010;43:1132–1137.
  • Hong-wei Y, Jun H, Ning L, Xiao-sha Q, Ying-min J. Fermentation performance and characterization of cold-adapted lipase produced with Pseudomonas Lip35. Agric Sci China. 2009;8:956–962.
  • Ruchi G, Anshu G, Khare SK. Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour Technol. 2008;99:4796–4802
  • Ito T, Kikuta H, Nagamori E, Honda H, Ogino H, Ishikawa H, Kobayashi T. Lipase production in two-step fed-batch culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. J Biosci Bioeng. 2001;91:245–250.
  • Gao XG, Cao SG, Zhang KC. Production properties and application to nonaqueous enzymatic catalysis of lipase from a newly isolated Pseudomonas strain. Enzyme Microb Technol. 2000;27:74–82.
  • Lee SY, Rhee JS. Production and partial purification of a lipase from Pseudomonas putida 3SK. Enzyme Microb Technol. 1983;15:617–623.
  • Myers RH, Montgomery DC. Response surface methodology: process and product optimization using designed experiments. New York (NY): Wiley; 1995.
  • Montgomery DC. Response surface methods and other approaches to process optimization. In: Montgomery DC, editor. Design and analysis of experiments. New York (NY): John Wiley and Sons; 1997; p. 427–510.
  • Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometals. 1946;33:305–325.
  • Giovanni M. Response surface methodology and product optimization. Food Technol. 1983;37:41–45.
  • Hwang S, Hansen HL. Modeling and optimization in anaerobic bioconversion of complex substrates to acidic and butyric acids. Biotechnol Bioeng. 1997;54:451–460.
  • Aktas N, Boyacı IH, Mutlu, M, Tanyolac A. Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RSM). Bioresour Technol. 2006;97:2252–2259.
  • Ismail A, Linde, M, Ghoul M. Optimization of butylgalactoside synthesis by β-galactosidase from Aspergillus oryzae. Enzyme Microb Technol. 1999;25:208–213.
  • Prapulla SG, Jacob Z, Chand N, Rajalakshmi D, Karanth NG. Maximization of lipid production by Rhodotorula gracilis CFR-1 using response surface methodology. Biotechnol Bioeng. 1992;40:965–970.
  • Carla JS, Silva ICR. Optimization of xylitol production by Candida guilliermondii FTI 20037 using response surface methodology. Process Biochem. 2001;36:1119–1124.
  • Niraj KS, Asha P, Datta M. Optimization of medium components for increased production of C-phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresour Technol. 2009;100:1663–1669.
  • Yao QY, Wei WT. Use of response surface methodology to optimize culture medium for production of lipase with Candida sp. 99–125. J Mol Catal B Enzym. 2006;43:9–14.
  • Yasmin K, Kalpana M, Bhavanath J, Vipul G. Statistical optimization of medium components for κ-carrageenase production by Pseudomonas elongate. Enzyme Microb Technol. 2007;40:813–822.
  • Rosu R, Uozaki Y, Iwasaki Y, Yamane T. Repeated use of immobilized lipase for monoacylglycerol production by solid-phase glycerolysis of olive oil. J Am Oil Chem. 1997;74(4):445–450.
  • Şahan T, Ceylan H, Şahiner N, Aktaş N. Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor. Bioresour Technol. 2010;101:4520–4526.
  • Yonten V, Aktas N. Exploring the optimum conditions for maximizing the microbial growth of Candida intermedia by response surface methodology. Prep Biochem Biotechnol. 2014;44(1):26–39.
  • Babu SI, Rao HG. Optimization of process parameters for the production of lipase in submerged fermantation by Yarrowia lipolytica NCIM 3589. Res J Microbiol. 2007;2:88–93.
  • Liu J, Zhang YC. Optimization of lipase production by a mutant of Candida antartica DSM-3855 using RSM. Int J Food Sci Technol. 2011;46:695–701.
  • Supaldamrongkul P, Bhumiratana A, Wiwat C. Optimization of extracellular lipase production from biocontrol fungus Nomuraea rileyi. Biocontrol Sci Technol. 2010;20:595–604.
  • Puri S, Qasim K, Beg QK, Rani G. Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr Microbiol. 2002;44:286–290.
  • Puri M, Kaur A, Ram SS, Anubhav S. Response surface optimization of medium components for naringinase production from Staphylococcus xylosus MAK2. Appl Biochem Biotechnol. 2010;162:181–191.
  • Rathakrıshnan P, Nagarajan P, Kannan RR. Response surface optimization of medium composition for protease production by Bacillus subtilis using cassava waste. Chem Ind Chem Eng Q. 2011;17(2):215–222.
  • Nilkamal M, Anshu G, Khare SK. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour Technol. 2008;99:1729–1735.
  • Andreas KG, Annette LP, Leda RC, Denise MGF. Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Process Biochem. 1999;35:85–90.
  • Mohankumar B, Veerabhadrappa V, Shara BS Somashekar D. Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. J Biosci Bioeng. 2014;117(2):208–214.
  • Iftikhar TM, Niaz M, Afzal IH, Rajoka MI. Maximization of intracellular lipase production in a lipase-overproducing mutant derivative of Rhizopus oligosporus DGM 31: a kinetic study. Food Technol Biotechnol. 2008;46(4):402–412.